Polyhydroxybutyrate (PHB) synthases catalyze the conversion of beta-hydroxybutyryl coenzyme A (HBCoA) to PHB. These enzymes require an active site cysteine nucleophile for covalent catalysis. A protein BLASTp search using the Class III Chromatium vinosum synthase sequence reveals high homology to prokaryotic lipases whose crystal structures are known. The homology is very convincing in the alpha-beta-elbow (with the active site nucleophile)-alpha-beta structure, residues 131-175 of the synthase. A conserved histidine of the Class III PHB synthases aligns with the active site histidine of the lipases using the ClustalW algorithm. This is intriguing as this histidine is approximately 200 amino acids removed in sequence space from the catalytic nucleophile. Different threading algorithms suggest that the Class III synthases belong to the alpha/beta hydrolase superfamily which includes prokaryotic lipases. Mutagenesis studies were carried out on C. vinosum synthase C149, H331, H303, D302, and C130 residues. These studies reveal that H331 is the general base catalyst that activates the nucleophile, C149, for covalent catalysis. The model indicates that C130 is not involved in catalysis as previously proposed [Müh, U., Sinskey, A. J., Kirby, D. P., Lane, W. S., and Stubbe, J. (1999) Biochemistry 38, 826-837]. Studies with D302 mutants suggest D302 functions as a general base catalyst in activation of the 3-hydroxyl of HBCoA (or a hydroxybutyrate acyl enzyme) for nucleophilic attack on the covalently linked thiol ester intermediate. The relationship of the lipase model to previous models based on fatty acid synthases is discussed.
The Class I and III polyhydroxybutyrate (PHB) synthases from Ralstonia eutropha and Chromatium vinosum, respectively, catalyze the polymerization of beta-hydroxybutyryl-coenzyme A (HBCoA) to generate PHB. These synthases have different molecular weights, subunit composition, and kinetic properties. Recent studies with the C. vinosum synthase suggested that it is structurally homologous to bacterial lipases and allowed identification of active site residues important for catalysis [Jia, Y., Kappock, T. J., Frick, T., Sinskey, A. J., and Stubbe, J. (2000) Biochemistry 39, 3927-3936]. Sequence alignments between the Class I and III synthases revealed similar residues in the R. eutropha synthase. Site-directed mutants of these residues were prepared and examined using HBCoA and a terminally saturated trimer of HBCoA (sT-CoA) as probes. These studies reveal that the R. eutropha synthase possesses an essential catalytic dyad (C319-H508) in which the C319 is involved in covalent catalysis. A conserved Asp, D480, was shown not to be required for acylation of C319 by sT-CoA and is proposed to function as a general base catalyst to activate the hydroxyl of HBCoA for ester formation. Studies of the [(3)H]sT-CoA with wild-type and mutant synthases reveal that 0.5 equiv of radiolabel is covalently bound per monomer of synthase, suggesting that a dimeric form of the enzyme is involved in elongation. These studies, in conjunction with search algorithms for secondary structure, suggest that the Class I and III synthases are mechanistically similar and structurally homologous, despite their physical and kinetic differences.
The crystal structure of PEP mutase from Mytilus edulis in complex with a substrate-analogue inhibitor, sulfopyruvate S-pyr (K i ) 22 µM), has been determined at 2.25 Å resolution. Mg(II)-S-pyr binds in the R/ barrel's central channel, at the C-termini of the -strands. The binding mode of S-pyr's pyruvyl moiety resembles the binding mode of oxalate seen earlier. The location of the sulfo group of S-pyr is postulated to mimic the phosphonyl group of the product phosphonopyruvate (P-pyr). This sulfo group interacts with the guanidinium group of Arg159, but it is not aligned for nucleopilic attack by neighboring basic amino side chains. Kinetic analysis of site directed mutants, probing the key active site residues Asp58, Arg159, Asn122, and His190 correlate well with the structural information. The results presented here rule out a phosphoryl transfer mechanism involving a double displacement, and suggest instead that PEP mutase catalysis proceeds via a dissociative mechanism in which the pyruvyl C(3) adds to the same face of the phosphorus from which the C(2)O departs. We propose that Arg159 and His190 serve to hold the phosphoryl/metaphosphate/phosphonyl group stationary along the reaction pathway, while the pyruvyl C(1)-C(2) bond rotates upon formation of the metaphosphate. In agreement with published data, the phosphoryl group transfer occurs on the Si-face of PEP with retention of configuration at phosphorus.We examine here the mechanism of phosphoryl transfer in the conversion of PEP 1 to P-pyr catalyzed by PEP mutase (1, 2):This P-C bond forming reaction serves as the entry point to all known phosphonate biosynthetic pathways (3). Despite intense efforts to determine the mechanism of catalysis by this unique enzyme, the pathway for phosphoryl transfer has remained elusive (4-11). A great deal is known about enzymic and nonenzymic phosphoryl transfer mechanisms (for reviews see refs 12-21), and it is against this backdrop that we present the unusual case of PEP mutase.A phosphoryl transfer may proceed via one of the following pathways: (i) dissociative, in which a trigonal metaphosphate intermediate is formed, (ii) concerted, associative transfer, involving a trigonal bipyramidal transition state, (iii) stepwise associative transfer (otherwise known as the addition-elimination pathway), involving a trigonal bipyramidal intermediate. While the concerted reaction is thought to proceed with the phosphoryl group donor and acceptor positioned in-line on the trigonal bipyramid apical positions, for the mechanisms involving intermediates, both in-line and adjacent attacks are possible.The preferred pathway is determined by the nature of the phosphorus electrophile, the nucleophile, and the reaction medium (solvent or enzyme active site) (see for examples, refs 22 and 23). Knowledge of the stereochemistry of the phosphoryl transfer at phosphorus can aid in the determination of which pathway is operative for a given reaction (see for examples refs 17, 18, and 24). The stereochemistry of phosphoryl transfer ...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.