In this work, which consisted to develop a predictive QSPR (Quantitative Structure-Property Relationship) model of the first reduction potential, we were particularly interested in a series of forty molecules. These molecules have constituted our database. Here, thirty molecules were used for the training set and ten molecules were used for the test set. For the calculation of the descriptors, all molecules have been firstly optimized with a frequency calculation at B3LYP/6-31G(d,p) theory level. Using statistical analysis methods, a predictive QSPR (Quantitative Structure-Property Relationship) model of the first reduction potential dependent on electronic affinity (EA) only have been developed. The statistical and validation parameters derived from this model have been determined and found interesting. These different parameters and the realized statistical tests have revealed that this model is suitable for predicting the first reduction potential of future TCNQ (tetracyanoquinodimethane) of this same family belonging to its applicability domain with a 95% confidence level.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.