A robust isotope-labeled internal standard method was established for the detection of 22 pesticides and metabolite residues in four kinds of fish; two were from freshwater fish, and two were from marine fish. Pesticides with wide application possibilities in rice in China, strong leaching to water, or high bioconcentration factors (BCF) in fish were selected. The samples were extracted with 1% acetic acid−99% acetonitrile. The extracts were first purified by solid-phase extraction (PEP-plus), cleaned with dispersive-solid-phase extraction (PSA and C18), and finally analyzed by liquid chromatography−tandem mass spectrometry (LC-MS/MS). The results showed that good linearities for the target compounds were observed in the range of 0.1−100 ng/mL, and the correlation coefficient (R 2 ) of each compound was greater than 0.99. The recoveries of the method were within 70−120% with RSDs <20% at three different spiked concentration levels (0.5, 5, and 100 ng/g). The quantitative limit of the method was 0.5− 5 ng/g. The method is shown to be sensitive and accurate and can meet the demands for the quantitative analysis of pesticides in fish.
The analysis of pesticide residues in aquatic products is challenging due to low residue levels and the complex matrix interference. In this study, we developed a simple, fast method for the trace analysis of 90 pesticides and metabolites in aquatic products. The analytes covered a wide polarity range with log Kow (log octanol-water partition coefficient) ranging from −1.2 to 6.37. Grass carp (Ctenopharyngodon idellus) and prawn (Penaeus chinensis) samples were chosen to validate the quantification method. The samples were extracted by 0.2% formic-acetonitrile, cleaned by solid-phase extraction (PRiME HLB), and analyzed by high performance liquid chromatography−tandem mass spectrometry. The results showed good linearities for the analytes and were observed in the range of 0.05–50 μg/L. The recoveries of the method were within 50.4–118.6%, with the relative standard deviations being lower than 20%. The limits of quantifications (LOQs) of the method were in the range of 0.05–5.0 μg/kg, which were superior to values compared with other research. The developed method was applied to detect pesticide residues in prawn samples from eastern coastal areas of China. Three herbicide residues of diuron, prometryn, and atrazine were detected in prawn samples. The method was sensitive and efficient, which is of significance in expanding the screening scope and improving the quantitative analysis efficiency in aquatic products.
Although dicofol has been widely banned all over the world as a kind of organochlorine contaminant, it still exists in the environment. This study developed a high-performance liquid chromatography coupled with mass spectrometry (HPLC-MS/MS) detection technique for dicofol, an environmental pollutant, for the first time using in-source fragmentation. The results confirmed that m/z 251 was the only precursor ion of dicofol after in-source fragmentation, and m/z 139 and m/z 111 were reasonable product ions. The main factors triggering the in-source fragmentation were the H+ content and solution conductivity when dicofol entered the mass spectrometer. Density functional theory can be used to analyze and interpret the mechanism of dicofol fragmentation reaction in ESI source. Dicofol reduced the molecular energy from 8.8 ± 0.05 kcal/mol to 1.0 ± 0.05 kcal/mol, indicating that the internal energy release from high to low was the key driving force of in-source fragmentation. A method based on HPLC-MS/MS was developed to analyze dicofol residues in environmental water. The LOQ was 0.1 μg/L, which was better than the previous GC or GC-MS methods. This study not only proposed an HPLC-MS/MS analysis method for dicofol for the first time but also explained the in-source fragmentation mechanism of compounds in ESI source, which has positive significance for the study of compounds with unconventional mass spectrometry behavior in the field of organic pollutant analysis and metabonomics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.