We investigate the space of two-sided multiattribute auctions, focusing on the relationship between constraints on the offers traders can express through bids, and the resulting computational problem of determining an optimal set of trades. We develop a formal semantic framework for characterizing expressible offers, and show conditions under which the allocation problem can be separated into first identifying optimal pairwise trades and subsequently optimizing combinations of those trades. We analyze the bilateral matching problem while taking into consideration relevant results from multiattribute utility theory. Network flow models we develop for computing global allocations facilitate classification of the problem space by computational complexity, and provide guidance for developing solution algorithms. Experimental trials help distinguish tractable problem classes for proposed solution techniques.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.