BackgroundN-acetylcarnosine (NAC), a dipeptide with powerful antioxidant properties that is extensively used as a pharmaceutical prodrug for the treatment of cataract and acute gastric disease, was investigated by molecular dynamics with the GROMACS program in order to understand the solvent effect on peptide conformation of the peptide molecule used as a component of a drug and which presents substantial information on where drug molecules bind and how they exert their effects. Besides, molecular docking simulation was performed by using the AutoDock Vina program which identify the kind of interaction between the drug and proteins. A delivery system based on poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) loaded with NAC (NAC-PLGA-NPs) for the treatment of cataract was prepared for the first time in this study in order to enhance drug bioavailability and biocompatibility. The objective of this work was to prepare and evaluate the structural formulation, characterization, and cytotoxicity studies of NAC-loaded NPs based on PLGA for cataract treatment.MethodsPLGA and NAC-loaded PLGA NPs were prepared using the double emulsion (w/o/w) method, and characterizations of the NPs were carried out with UV–Vis spectrometer to determine drug concentration, the Zeta-sizer system to analyze size and zeta potential, FTIR spectrometer to determine the incorporation of drug and PLGA, and TEM analysis for morphological evaluation.ResultsNAC-loaded PLGA NPs were successfully obtained according to UV–Vis and FTIR spectroscopy, Zeta-sizer system. And it was clearly observed from the TEM analysis that the peptide-loaded NPs had spherical and non-aggregated morphology. Also, the NPs had low toxicity at lower concentrations, and toxicity was augmented by increasing the concentration of the drug.DiscussionThe NAC molecule, which has been investigated as a drug molecule due to its antioxidant and oxidative stress-reducing properties, especially in cataract treatment, was encapsulated with a PLGA polymer in order to increase drug bioavailability. This study may contribute to the design of drugs for cataract treatment with better reactivity and stability.
Papain is a protease enzyme with therapeutic properties that are very valuable for medical applications. Poly(ε-caprolactone) (PCL) is an ideal polymeric carrier for controlled drug delivery systems due to its low biodegradability and its high biocompatibility. In this study, the three-dimensional structure and action mechanism of papain were investigated by in vitro and in silico experiments using molecular dynamics (MD) and molecular docking methods to elucidate biological functions. The results showed that the size of papain-loaded PCL nanoparticles (NPs) and the polydispersity index (PDI) of the NPs were 242.9 nm and 0.074, respectively. The encapsulation efficiency and loading efficiency were 80.4 and 27.2%, respectively. Human embryonic kidney cells (HEK-293) were used for determining the cytotoxicity of papain-loaded PCL and PCL nanoparticles. The in vitro cell culture showed that nanoparticles are not toxic at low concentrations, while toxicity slightly increases at high concentrations. In silico studies, which were carried out with MD simulations and ADME analysis showed that the strong hydrogen bonds between the ligand and the papain provide stability and indicate the regions in which the interactions occur.
The Gly-Glu (GE) dipeptide, which acts as a neurotransmitter, is made of glycine and glutamic amino acids that are used in the treatment of neurological diseases such as Schizophrenia, Parkinson and Alzheimer. Gly-Glu dipeptide is an important peptide structure that helps prevent neuronal degeneration, especially in Alzeimer's disease. Caspases which are cysteine proteases play a crucial role for apoptotic death of neurons in Alzheimer's disease. In patients with Alzheimer's disease, there was an increase in caspase-3 immunoreactivity in the death of pyramidal neurons, where the initial sites of neuronal loss were proven (Gervais et al. 1999). The molecular structure of the GE dipeptide having anti-apoptotic properties is very important for clarifying the activation mechanism with caspase-3 protein. Molecular dynamics and molecular docking calculations were applied to elucidate the most stable molecular conformation and to grasp the mechanism of activity of GE with caspase-3. Firstly, GROMACS program was used to reveal the conformation variations of the GE within the body. The stability of the peptide is ensured by confinement in 704 water molecules. Secondly, Glide SP (standard precision) module of the Maestro 11.4 version in the Schrodinger Software program was used to determine the linkages and activity of the peptide with the caspase-3 protein. In this study, the structure of this dipeptide, pharmacological properties and its mechanism of action with caspase-3 protein were investigated for the first time by molecular dynamics and docking calculations.
Phe-Tyr dipeptide which was investigated in Wakame food with greatest ACE-inhibitory activity is used as a pharmaceutical drug for the treatment of hypertension, cardiovascular diseases, and diabetic nephropathy. To improve the bioavailability of Phe-Tyr, a delivery system based on poly (lactic-co-glycolic acid) (PLGA) nanoparticles loaded with Phe-Tyr (Phe-Tyr-PLGA NPs) for treating hypertension and cardiovascular diseases was prepared in this study. In the experiments, poly(lactic-co-glycolic acid) (PLGA) and Phe-Tyr dipeptide-loaded PLGA nanoparticles were prepared using the double emulsion (w/o/w) method. The characterizations of the nanoparticles were performed with a UV-vis spectrometer, the Zeta-sizer system, and FTIR spectrometer. The optimum size of the Phe-Tyr dipeptide-loaded PLGA nanoparticle was obtained with a 213.8 nm average particle size, and a 0.061 polydispersity index, -19.5 mV zeta potential, 34% of loaded and 90.09% of encapsulation efficiency. From TEM analysis, it was clearly seen that the dipeptide loaded nanoparticles had the spherical and non-aggregated morphology and Phe-Tyr dipeptide loaded-PLGA nanoparticles were obtained successfully. Cell toxicity of nanoparticles at different concentrations was assayed with XTT methods on L929 fibroblast cells. This study determined that the nanoparticles have low toxicity at lower concentration and toxicity augmented with increasing concentration of dipeptide. To analyze the effect of solvents on structure of Phe-Tyr, Molecular dynamics simulation was performed with GROMACS program and molecular orbital calculations were carried out to obtain structural and electronic properties of dipeptide. Moreover, molecular docking calculations were also employed to model and predict protein-drug interactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.