The phylogeny and systematics of fur seals and sea lions (Otariidae) have long been studied with diverse data types, including an increasing amount of molecular data. However, only a few phylogenetic relationships have reached acceptance because of strong gene-tree species tree discordance. Divergence times estimates in the group also vary largely between studies. These uncertainties impeded the understanding of the biogeographical history of the group, such as when and how trans-equatorial dispersal and subsequent speciation events occurred. Here we used high-coverage genome-wide sequencing for 14 of the 15 species of Otariidae to elucidate the phylogeny of the family and its bearing on the taxonomy and biogeographical history. Despite extreme topological discordance among gene trees, we found a fully supported species tree that agrees with the few well-accepted relationships and establishes monophyly of the genus Arctocephalus. Our data support a relatively recent trans-hemispheric dispersal at the base of a southern clade, which rapidly diversified into six major lineages between 3 to 2.5 Ma. Otaria diverged first, followed by Phocarctos and then four major lineages within Arctocephalus. However, we found Zalophus to be non-monophyletic, with California (Z. californianus) and Steller sea lions (Eumetopias jubatus) grouping closer than the Galapagos sea lion (Z. wollebaeki) with evidence for introgression between the two genera. Overall, the high degree of genealogical discordance was best explained by incomplete lineage sorting resulting from quasi-simultaneous speciation within the southern clade with introgresssion playing a subordinate role in explaining the incongruence among and within prior phylogenetic studies of the family.
Hybridization is widespread and constitutes an important source of genetic variability and evolution. In animals, its role in generating novel and independent lineages (hybrid speciation) has been strongly debated, with only a few cases supported by genomic data. The South American fur seal (SAfs) Arctocephalus australis is a marine apex predator of Pacific and Atlantic waters, with a disjunct set of populations in Peru and Northern Chile [Peruvian fur seal (Pfs)] with controversial taxonomic status. We demonstrate, using complete genome and reduced representation sequencing, that the Pfs is a genetically distinct species with an admixed genome that originated from hybridization between the SAfs and the Galapagos fur seal ( Arctocephalus galapagoensis ) ~400,000 years ago. Our results strongly support the origin of Pfs by homoploid hybrid speciation over alternative introgression scenarios. This study highlights the role of hybridization in promoting species-level biodiversity in large vertebrates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.