This work studies the influence of the concentration and oxidation degree on the rheological behavior of graphene oxide (GO) nanosheets dispersed on polyethylene glycol (PEG). The rheological characterization was fulfilled in shear flow through rotational rheometry measurements, in steady, transient and oscillatory regimes. Graphene oxide was prepared by chemical exfoliation of graphite using the modified Hummers method. The morphological and structural characteristics originating from the synthesis were analyzed by X-ray diffraction, Raman spectroscopy, thermogravimetric analysis, Fourier transform infrared spectroscopy, and atomic force microscopy. It is shown that higher oxidation times increase the functional groups, which leads to a higher dispersion and exfoliation of GO sheets in the PEG. Moreover, the addition of GO in a PEG solution results in significant growth of the suspension viscosity, and a change of the fluid behavior from Newtonian to pseudoplastic. This effect is related to the concentration and oxidation level of the obtained GO particles. The results obtained aim to contribute towards the understanding of the interactions between the GO and the polymeric liquid matrix, and their influence on the suspension rheological behavior.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.