The five-equation model of multi-component flows has been attracting much attention among researchers during the past twenty years for its potential in the study of the multi-component flows. In this paper, we employ a second order finite volume method with minmod limiter in spatial discretization, which preserves local extrema of certain physical quantities and is thus capable of simulating challenging test problems without introducing non-physical oscillations. Moreover, to improve the numerical resolution of the solutions, the adaptive moving mesh strategy proposed in [Huazhong Tang, Tao Tang, Adaptive mesh methods for one-and two-dimensional hyperbolic conservation laws, SINUM, 41: 487-515, 2003] is applied. Furthermore, the proposed method can be proved to be capable of preserving the velocity and pressure when they are initially constant, which is essential in material interface capturing. Finally, several classical numerical examples demonstrate the effectiveness and robustness of the proposed method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.