Steady-state visual evoked potentials (SSVEP) based paradigm is a conventional BCI method with the advantages of high information transfer rate, high tolerance to artifacts and the robust performance across users. But the occurrence of mental load and fatigue when users stare at flickering stimuli is a critical problem in implementation of SSVEP-based BCIs. Based on electroencephalography (EEG) power indices α, θ, θ + α, ratio index θ/α and response properties of amplitude and SNR, this study quantitatively evaluated the mental load and fatigue in both of conventional flickering and the novel motion-reversal visual attention tasks. Results over nine subjects revealed significant mental load alleviation in motion-reversal task rather than flickering task. The interaction between factors of “stimulation type” and “fatigue level” also illustrated the motion-reversal stimulation as a superior anti-fatigue solution for long-term BCI operation. Taken together, our work provided an objective method favorable for the design of more practically applicable steady-state evoked potential based BCIs.
Visual evoked potential (VEP) has been used as an alternative method to assess visual acuity objectively, especially in non-verbal infants and adults with low intellectual abilities or malingering. By sweeping the spatial frequency of visual stimuli and recording the corresponding VEP, VEP acuity can be defined by analyzing electroencephalography (EEG) signals. This paper presents a review on the VEP-based visual acuity assessment technique, including a brief overview of the technique, the effects of the parameters of visual stimuli, and signal acquisition and analysis of the VEP acuity test, and a summary of the current clinical applications of the technique. Finally, we discuss the current problems in this research domain and potential future work, which may enable this technique to be used more widely and quickly, deepening the VEP and even electrophysiology research on the detection and diagnosis of visual function.
Signal processing is one of the key points in brain computer interface (BCI) application. The common methods in BCI signal classification include canonical correlation analysis (CCA), support vector machine (SVM) and so on. However, because BCI signals are very complex and valid signals often come with confounded background noise, many current classification methods would lose meaningful information embedded in human EEGs. Otherwise, due to the huge inter-subject variability with respect to characteristics and patterns of BCI signals, there often exists large difference of classification accuracy among different subjects. Since BCI signals have high dimensionality and multi-channel properties, this paper proposes a novel structure of deep belief neural (DBN) network stacked by restricted boltsman machine (RBM) to extract efficient features from steady-state motion visual evoked potential signals and implement further classification. Here DBN extracts local feature from BCI data of each channel separately and fuses the local features, and then input the fused features to the output classifier which is consist of softmax units. Results proved that the proposed algorithm could achieve higher accuracy and lower inter-subject variability in short response time when compared to conventional CCA method.
The refresh rate is one of the important parameters of visual presentation devices, and assessing the effect of the refresh rate of a device on motion perception has always been an important direction in the field of visual research. This study examined the effect of the refresh rate of a device on the motion perception response at different stimulation frequencies and provided an objective visual electrophysiological assessment method for the correct selection of display parameters in a visual perception experiment. In this study, a flicker-free steady-state motion visual stimulation with continuous scanning frequency and different forms (sinusoidal or triangular) was presented on a low-latency LCD monitor at different refresh rates. Seventeen participants were asked to observe the visual stimulation without head movement or eye movement, and the effect of the refresh rate was assessed by analyzing the changes in the intensity of their visual evoked potentials. The results demonstrated that an increased refresh rate significantly improved the intensity of motion visual evoked potentials at stimulation frequency ranges of 7–28 Hz, and there was a significant interaction between the refresh rate and motion frequency. Furthermore, the increased refresh rate also had the potential to enhance the ability to perceive similar motion. Therefore, we recommended using a refresh rate of at least 120 Hz in motion visual perception experiments to ensure a better stimulation effect. If the motion frequency or velocity is high, a refresh rate of≥240 Hz is also recommended.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.