The large expansion of GGGGCC (G4C2) repeats of the C9orf72 gene have been found to lead to the pathogenesis of devastating neurological diseases, amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). The structural polymorphisms of C9orf72 HRE DNA and RNA may cause aberrant transcription and contribute to the development of ALS and FTD. Here we showed that the two-repeat G4C2 DNA, d(G4C2)2, simultaneously formed parallel and antiparallel G-quadruplex conformations in the potassium solution. We separated different folds of d(G4C2)2 by anion exchange chromatography, followed with characterizations by circular dichroism and nuclear magnetic resonance spectroscopy. The parallel d(G4C2)2 G-quadruplex folded as a symmetric tetramer, while the antiparallel d(G4C2)2 adopted the topology of an asymmetric dimer. These folds are distinct from the antiparallel chair-type conformation we previously identified for the d(G4C2)4 G-quadruplex. Our findings have demonstrated the conformational heterogeneity of the C9orf72 HRE DNA, and provided new insights into the d(G4C2)n folding. Meanwhile, the purified d(G4C2)2 G-quadruplex samples are suitable for further three-dimensional structure characterizations, which are required for the structure-based design of small molecules targeting ALS and FTD related C9orf72 HRE.
Iron is essential for organisms. It is mainly utilized in mitochondria for biosynthesis of iron-sulfur clusters, hemes and other cofactors. Mitoferrin 1 and mitoferrin 2, two homologues proteins belonging to the mitochondrial solute carrier family, are required for iron delivery into mitochondria. Mitoferrin 1 is highly expressed in developing erythrocytes which consume a large amount of iron during hemoglobinization. Mitoferrin 2 is ubiquitously expressed, whose functions are less known. Zebrafish with mitoferrin 1 mutation show profound hypochromic anaemia and erythroid maturation arrests, and yeast with defects in MRS3/4, the counterparts of mitoferrin 1/2, has low mitochondrial iron levels and grows poorly by iron depletion. Mitoferrin 1 expression is up-regulated in yeast and mouse models of Fiedreich's ataxia disease and in human cell culture models of Parkinson disease, suggesting its involvement in the pathogenesis of diseases with mitochondrial iron accumulation. In this study we found that reduced mitoferrin levels in C. elegans by RNAi treatment causes pleiotropic phenotypes such as small body size, reduced fecundity, slow movement and increased sensitivity to paraquat. Despite these abnormities, lifespan was increased by 50% to 80% in N2 wild type strain, and in further studies using the RNAi sensitive strain eri-1, more than doubled lifespan was observed. The pathways or mechanisms responsible for the lifespan extension and other phenotypes of mitoferrin RNAi worms are worth further study, which may contribute to our understanding of aging mechanisms and the pathogenesis of iron disorder related diseases.
Escherichia coli topoisomerase I (TopA) cleaves and rejoins one strand of double-stranded DNA to relax the negatively supercoiled DNA. Structurally, TopA contains an N-terminal catalytic fragment and a C-terminal zinc-binding region that is required for relaxation of the negatively supercoiled DNA. Here we report that E. coli TopA is an iron and zinc binding protein. The UV–Vis absorption measurements and metal content analyses reveal that TopA purified from E. coli cells grown in the rich LB medium contains both iron and zinc. However, TopA purified from E. coli cells grown in the M9 minimal medium has negligible amounts of zinc or iron and no topoisomerase activity. Nevertheless, supplement of exogenous zinc or iron in E. coli cells grown in the M9 minimal medium produces the zinc- or iron-bound TopA, respectively. Whereas the zinc-bound TopA is fully active to relax the negatively super-coiled DNA, the iron-bound TopA has little or no enzyme activity. Furthermore, excess iron in the M9 minimal medium is able to compete with the zinc binding in TopA in E. coli cells and attenuate the topoisomerase activity, suggesting that E. coli TopA may be modulated by iron and zinc binding in vivo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.