Chitinases catalyze the degradation of chitin, a ubiquitous polymer generated from the cell walls of fungi, shells of crustaceans, and cuticles of insects. They are gaining increasing attention in medicine, agriculture, food and drug industries, and environmental management. Their roles in the degradation of chitin for the production of industrially useful products and in the control of fungal pathogens and insect pests render them attractive for such purposes. However, chitinases have diverse sources, characteristics, and mechanisms of action that seem to restrain optimization procedures and render standardization techniques for enhanced practical applications complex. Hence, results of laboratory trials are not usually consistent with real-life applications. With the growing field of protein engineering, these complexities can be overcome by modifying or redesigning chitinases to enhance specific features required for specific applications. In this review, the variations in features and mechanisms of chitinases that limit their exploitation in biotechnological applications are compiled. Recent attempts to engineer chitinases for improved efficiency are also highlighted.
The variety of halogenated substances and their derivatives widely used as pesticides, herbicides and other industrial products is of great concern due to the hazardous nature of these compounds owing to their toxicity, and persistent environmental pollution. Therefore, from the viewpoint of environmental technology, the need for environmentally relevant enzymes involved in biodegradation of these pollutants has received a great boost. One result of this great deal of attention has been the identification of environmentally relevant bacteria that produce hydrolytic dehalogenases—key enzymes which are considered cost-effective and eco-friendly in the removal and detoxification of these pollutants. These group of enzymes catalyzing the cleavage of the carbon-halogen bond of organohalogen compounds have potential applications in the chemical industry and bioremediation. The dehalogenases make use of fundamentally different strategies with a common mechanism to cleave carbon-halogen bonds whereby, an active-site carboxylate group attacks the substrate C atom bound to the halogen atom to form an ester intermediate and a halide ion with subsequent hydrolysis of the intermediate. Structurally, these dehalogenases have been characterized and shown to use substitution mechanisms that proceed via a covalent aspartyl intermediate. More so, the widest dehalogenation spectrum of electron acceptors tested with bacterial strains which could dehalogenate recalcitrant organohalides has further proven the versatility of bacterial dehalogenators to be considered when determining the fate of halogenated organics at contaminated sites. In this review, the general features of most widely studied bacterial dehalogenases, their structural properties, basis of the degradation of organohalides and their derivatives and how they have been improved for various applications is discussed.
Modification of the type I polyhydroxyalkanoate synthase of Ralstonia eutropha (PhaC(Re)) was performed through systematic in vitro evolution in order to obtain improved PhaC(Re) having an enhanced activity of poly(3-hydroxybutyrate) (PHB) synthesis in recombinant Escherichia coli. For the first time, a beneficial G4D N-terminal mutation important for the enhancement of both PHB content in dry cells and PhaC(Re) level in vivo was identified. Site-directed saturation mutagenesis at the G4 position enabled us to identify other mutations conferring similar enhanced characteristics. In addition, the PHB homopolymer synthesized by most G4X single mutants also had higher molecular weights than that of the wild-type. In vitro enzymatic assays of purified G4D mutant PhaC(Re) revealed that the mutant enzyme exhibited slightly lower activity and reaction efficiency compared to the wild-type enzyme. [diagram in text].
Recent outbreaks of highly pathogenic and occasional drug-resistant influenza strains have highlighted the need to develop novel anti-influenza therapeutics. Here, we report computational and experimental efforts to identify influenza neuraminidase inhibitors from among the 3000 natural compounds in the Malaysian-Plants Natural-Product (NADI) database. These 3000 compounds were first docked into the neuraminidase active site. The five plants with the largest number of top predicted ligands were selected for experimental evaluation. Twelve specific compounds isolated from these five plants were shown to inhibit neuraminidase, including two compounds with IC50 values less than 92 μM. Furthermore, four of the 12 isolated compounds had also been identified in the top 100 compounds from the virtual screen. Together, these results suggest an effective new approach for identifying bioactive plant species that will further the identification of new pharmacologically active compounds from diverse natural-product resources.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.