Traditional MPPT algorithms have demonstrated effective performance relative to their flexibility and simplicity of implementation. However, its main disadvantages are the ineffectiveness and the large oscillations around the MPP under non-uniform solar irradiance. To achieve better performance in the power extraction from the PV system, we propose in this work a new hybrid controller focused on the bond graph and fuzzy logic (BG-FL-MPPT) to track the maximum power point under different weather conditions. The aim of the research is BG-FL-MPPT development, which will guarantee the optimum power reference operation of the system with greater efficiency, less error in the stability and voltage fluctuations. A rigorous comparison was made between the developed controller and other two MPPT algorithms, including perturbation and observation (P&O) and particle swarm optimization (PSO), in three distinct test scenarios to check the effectiveness of the suggested control. In terms of stability and robustness, it was found from the results obtained that the established controller assures the required operation of the studied system by tracking efficiency of up to 99.95% to achieve the maximum power point. A 90% faster convergence rate is obtained with a decrease in oscillations of 94.95%. The experimental tests were performed using a high-performance experimental platform, and in the same metrological conditions, an in-depth comparison of the experimental results with the results obtained by simulation was made.
This paper is deals in part of research that has been conducted on modern means in the basis of power electronics. Harmonic cancellation of distribution network is currently a serious problem, especially in high electrical industry. The main source of harmonic currents injected into the network requires attention to reduce the current harmonic levels. Energy quality is a fairly broad concept which covers both, the quality of power supply (voltage wave) and these of the currents injected into the electrical grid. In this context, a modern approved preventive solution in purpose to limit the rate of harmonic disturbance caused by the deferent power electronics systems connected to the grid must take action. It appears necessary to develop the quality and stability of the grid and develop curative devices such as converters provided with a control device making the current drawn on the most sinusoidal network possible. This paper proposes a control of tow stage grid tied PV system established on finite set model predictive control (FS-MPC). The design of FS-MPC is developed depending on the structure and operating principle associated to three-phase inverter tied to the grid. In this context, we have also employed the structure of MPPT controller (P&O) and PI controller for adjustment of the DC-bus voltage. To set the proposed control scheme, numerical simulations are carried out using Matlab/Simulink 2013b. The obtained results demonstrate that the proposed control scheme assure the tracking of MPP and the injection of extracted PV power into the grid with high current quality under irradiation changes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.