We report the strategy leading to the first detection of variant of concern 202012/01 (VOC) in France (21 December 2020). First, the spike (S) deletion H69–V70 (ΔH69/ΔV70), identified in certain SARS-CoV-2 variants including VOC, is screened for. This deletion is associated with a S-gene target failure (SGTF) in the three-target RT-PCR assay (TaqPath kit). Subsequently, SGTF samples are whole genome sequenced. This approach revealed mutations co-occurring with ΔH69/ΔV70 including S:N501Y in the VOC.
The unwarranted persistence of the immunoinflammatory process turns this critical component of the body’s natural defenses into a destructive mechanism, which is involved in a wide range of diseases, including chronic rejection. Performing a comprehensive analysis of human kidney grafts explanted because of terminal chronic rejection, we observed that the inflammatory infiltrate becomes organized into an ectopic lymphoid tissue, which harbors the maturation of a local humoral immune response. Interestingly, intragraft humoral immune response appeared uncoupled from the systemic response because the repertoires of locally produced and circulating alloantibodies only minimally overlapped. The organization of the immune effectors within adult human inflamed tissues recapitulates the biological program recently identified in murine embryos during the ontogeny of secondary lymphoid organs. When this recapitulation was incomplete, intragraft B cell maturation was impeded, limiting the aggressiveness of the local humoral response. Identification of the molecular checkpoints critical for completion of the lymphoid neogenesis program should help develop innovative therapeutic strategies to fight chronic inflammation.
BackgroundEndocavity ultrasound is seen as a harmless procedure and has become a common gynaecological procedure. However without correct disinfection, it may result in nosocomial transmission of genito-urinary pathogens, such as high-risk Human Papillomavirus (HR-HPV). We aimed to evaluate the currently recommended disinfection procedure for covered endocavity ultrasound probes, which consists of “Low Level Disinfection” (LLD) with “quaternary ammonium compounds” containing wipes.MethodsFrom May to October 2011 swabs were taken from endovaginal ultrasound probes at the Gynecology Department of the Lyon University Hospital. During the first phase (May–June 2011) samples were taken after the ultrasound examination and after the LLD procedure. In a second phase (July–October 2011) swab samples were collected just before the probe was used. All samples were tested for the presence of human DNA (as a marker for a possible transmission of infectious pathogens from the genital tract) and HPV DNA with the Genomica DNA microarray (35 different HPV genotypes).ResultsWe collected 217 samples before and 200 samples after the ultrasound examination. The PCR was inhibited in two cases. Human DNA was detected in 36 (18%) post-examination samples and 61 (28%) pre-examination samples. After the ultrasound LLD procedure, 6 (3.0%) samples contained HR-HPV types (16, 31, 2×53 and 58). Similarly, HPV was detected in 6 pre-examination samples (2.7%). Amongst these 4 (1.9%) contained HR-HPV (types 53 and 70).ConclusionOur study reveals that a considerable number of ultrasound probes are contaminated with human and HR-HPV DNA, despite LLD disinfection and probe cover. In all hospitals, where LLD is performed, the endovaginal ultrasound procedure must therefore be considered a source for nosocomial HR-HPV infections. We recommend the stringent use of high-level disinfectants, such as glutaraldehyde or hydrogen peroxide solutions.
Aim of the StudyIn many countries, Low Level Disinfection (LLD) of covered transvaginal ultrasound probes is recommended between patients' examinations. The aim of this study was to evaluate the antimicrobial efficacy of LLD under routine conditions on a range of microorganisms.Materials and MethodsSamples were taken over a six month period in a private French Radiology Center. 300 specimens derived from endovaginal ultrasound probes were analyzed after disinfection of the probe with wipes impregnated with a quaternary ammonium compound and chlorhexidine. Human papillomavirus (HPV) was sought in the first set of s100 samples, Chlamydia trachomatis and mycoplasmas were searched in the second set of 100 samples, bacteria and fungi in the third 100 set samples. HPV, C. trachomatis and mycoplasmas were detected by PCR amplification. PCR positive samples were subjected to a nuclease treatment before an additional PCR assay to assess the likely viable microorganisms. Bacteria and fungi were investigated by conventional methods.ResultsA substantial persistence of microorganisms was observed on the disinfected probes: HPV DNA was found on 13% of the samples and 7% in nuclease-resistant form. C. trachomatis DNA was detected on 20% of the probes by primary PCR but only 2% after nuclease treatment, while mycoplasma DNA was amplified in 8% and 4%, respectively. Commensal and/or environmental bacterial flora was present on 86% of the probes, occasionally in mixed culture, and at various levels (10->3000 CFU/probe); Staphylococcus aureus was cultured from 4% of the probes (10-560 CFU/probe). No fungi were isolated.ConclusionOur findings raise concerns about the efficacy of impregnated towels as a sole mean for disinfection of ultrasound probes. Although the ultrasound probes are used with disposable covers, our results highlight the potential risk of cross contamination between patients during ultrasound examination and emphasize the need for reviewing the disinfection procedure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.