In contrast to the experience in other European countries, the onset of the A(H1N1)2009 influenza virus epidemic was unexpectedly slow in France during the first part of autumn 2009. Our objective was to test the hypothesis that intense circulation of rhinoviruses might have reduced the probability of infection by A(H1N1)2009 virus at the beginning of autumn 2009. Systematic analysis for the detection of A(H1N1)2009 (H1N1) and human rhinovirus (HRV) was performed by RT-PCR from week 36 to week 48 on respiratory samples sent to the diagnostic laboratory by the paediatric hospital (n = 2121). Retrospective analysis of the obtained data, using 2 x 2 contingency tables with Fisher's exact test, revealed evidence of an inverse relationship between HRV and H1N1 detection. Between weeks 36 and 48 of 2009, both HRV and H1N1 were detected but in different time frames. HRV dispersed widely during early September, peaking at the end of the month, whereas the H1N1 epidemic began during mid-October and was still active at the end of this survey. During the co-circulation period of these two respiratory viruses (weeks 43-46), HRV detection appeared to reduce the likelihood of H1N1 detection in the same sample (OR = 0.08-0.24 p <0.0001). These results support the hypothesis that HRV infections can reduce the probability of A(H1N1) infection. This viral interference between respiratory viruses could have affected the spread of the H1N1 viruses and delayed the influenza pandemic at the beginning of autumn in France.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.