In this article we propose an effective algorithm for small object detection in high resolution images. We look at the image at different scales and use block processing by convolutional neural network. Pyramid layers number is defined by input image resolution and convolutional layer size. On each layer of pyramid except the highest we perform splitting overlapping blocks to improve small object detection accuracy. Detected areas are merged into one if they belong to the same class and have high overlapping value. In the paper experimental results using YOLOv4 for 4K and 8K images are presented. Our algorithm shows better detecting small objects results in high-definition video than YOLOv4.
This paper proposes two effective normalized similarity functions for robust object detection in very high density impulse noisy images. These functions form an integral similarity estimate based on relations of minimum by maximum values for all pairs of analyzed image features. To provide invariance under the constant brightness changes, zero-mean additive modification is used. We explore properties of our functions and compare them with other commonly used for object detection in images corrupted by impulse noise. The efficiency of our approach is illustrated and confirmed by experimental results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.