A highly active hydrogen evolution reaction (HER) electrode with low Pt loading on glassy carbon (GC) has been prepared by anodic platinum dissolution and co-deposition of polyoxometalates. TEM, EDS, XPS, CV, and ICP-MS analyses gave a Pt loading of 50-100 ng/cm2, corresponding to a Pt coverage of only 0.08-0.16 monolayer. With an overpotential of 65 mV at 20 mA/cm2, the modified GC has a HER activity comparable to that of the commercial Pt working electrode.
The 2,2'-bipyridyl moieties lining the channels of two designer metal-organic frameworks (MOFs), UiO-bpydc and Eu-bpydc (bpydc is 2,2'-bipyridine 5,5'-dicarboxylic acid), recognize and pre-concentrate metal ion analytes and, in the case of Eu-bpydc, transfer energy to the Eu(3+) centers, to provide highly sensitive luminescence sensors for transition metal ions.
Hierarchical structures of porous Cu/Zn@C materials via pyrolysis of Zn–Cu-BTC metal–organic frameworks give stable activity in the reverse water gas shift reaction, thanks to stabilization of the nanoparticles by carbon encapsulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.