We have developed a kind of novel fused-ring small molecular acceptor, whose planar conformation can be locked by intramolecular noncovalent interaction. The formation of planar supramolecular fused-ring structure by conformation locking can effectively broaden its absorption spectrum, enhance the electron mobility, and reduce the nonradiative energy loss. Polymer solar cells (PSCs) based on this acceptor afforded a power conversion efficiency (PCE) of 9.6%. In contrast, PSCs based on similar acceptor, which cannot form a flat conformation, only gave a PCE of 2.3%. Such design strategy, which can make the synthesis of small molecular acceptor much easier, will be promising in developing a new acceptor for high efficiency polymer solar cells.
The performance of polymer solar cells (PSCs) is commonly improved using additives or annealing treatment. However, these processes are accompanied by disadvantages, including poor reproducibility and stability. Herein, a molecular design strategy is proposed to obtain additive-and annealing-free PSCs. IDTOT2F containing two alkoxyl side chains at the central unit of the nonfullerene acceptor IDTT2F was developed. This molecular design results in excellent solubility in solutions, ordered molecular packing in films, slightly elevated energy levels, and a higher film absorption coefficient. Compared with its counterpart IDTT2F, its improved solubility provides an active layer with better morphology, its ordered molecular packing enhances the charge mobility in blend films, and its slightly elevated energy level furnishes a higher open-circuit voltage of devices. As a result, IDTOT2F-based devices display a maximum power conversion efficiency of 12.79%, which is one of the highest values reported for a PSC fabricated without any extra treatment.
A series of alkyl, alkoxyl, and alkylthio substituted A–π–D–π–A type nonfullerene acceptors (NFAs) IDTCN‐C, IDTCN‐O, and IDTCN‐S are designed and synthesized. The introduction of a lateral side chain at the outer position of the π bridge unit can endow the terminal moiety with a confined planar conformation due to the steric hindrance. Thus, compared with nonsubstituted NFA (IDTT2F), these acceptors tend to form favorable face‐on orientation and exhibit strong crystallinity as verified with grazing‐incidence wide‐angle X‐ray scattering measurement. Moreover, the variation of side chain can significantly change the lowest unoccupied molecular orbital (LUMO) energy level of acceptors. As state‐of‐the‐art NFAs, a power conversion efficiency of 13.28% (Voc = 0.91 V, Jsc = 19.96 mA cm−2, and FF = 73.2%) is obtained for the as‐cast devices based on IDTCN‐O, which is among the highest value reported in literature. The excellent photovoltaic performance for IDTCN‐O can be attributed to its slightly up‐shifted LUMO level and more balanced charge transport. This research demonstrates side chain engineering is an effective way to achieve high efficiency organic solar cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.