The coupling between transformation-induced plasticity (TRIP) and low cycle fatigue of pseudoelastic shape memory alloys (SMAs) is investigated and an upper bound of low cycle fatigue life is found. Through combined in-situ infrared and digital image correlation (DIC) observations on NiTi sheet, we reveal that the low cycle fatigue of SMAs is governed by the transformation band fronts with the highest temperature where TRIP is maximized. The local state at the band front is in fact determined by a coupling effect of the applied loads and thermal conditions, the former driving the transformation with heat release while the latter determining the heat transfer efficiency. This coupling leads the fatigue lives to distribute along a series of isotherms. As the coupling tends to be infinitesimal, local TRIP is limited to a minimum level, thus resulting in an upper bound of low cycle fatigue life. This agrees well with the experiments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.