The incidence of preterm birth exceeds 10% worldwide. There are significant disparities in the frequency of preterm birth among populations within countries, and women of African ancestry disproportionately bear the burden of risk in the United States. In the present study, we report a community resource that includes ‘omics’ data from approximately 12,000 samples as part of the integrative Human Microbiome Project. Longitudinal analyses of 16S ribosomal RNA, metagenomic, metatranscriptomic and cytokine profiles from 45 preterm and 90 term birth controls identified harbingers of preterm birth in this cohort of women predominantly of African ancestry. Women who delivered preterm exhibited significantly lower vaginal levels of Lactobacillus crispatus and higher levels of BVAB1, Sneathia amnii, TM7-H1, a group of Prevotella species and nine additional taxa. The first representative genomes of BVAB1 and TM7-H1 are described. Preterm-birth-associated taxa were correlated with proinflammatory cytokines in vaginal fluid. These findings highlight new opportunities for assessment of the risk of preterm birth.
The microbiome of the female reproductive tract has implications for women’s reproductive health. We examined the vaginal microbiome in two cohorts of women who experienced normal term births: a cross-sectionally sampled cohort of 613 pregnant and 1,969 non-pregnant women, focusing on 300 pregnant and 300 non-pregnant women of African, Hispanic or European ancestry case-matched for race, gestational age and household income; and a longitudinally sampled cohort of 90 pregnant women of African or non-African ancestry. In these women, the vaginal microbiome shifted during pregnancy toward Lactobacillus-dominated profiles at the expense of taxa often associated with vaginal dysbiosis. The shifts occurred early in pregnancy, followed predictable patterns, were associated with simplification of the metabolic capacity of the microbiome and were significant only in women of African or Hispanic ancestry. Both genomic and environmental factors are likely contributors to these trends, with socioeconomic status as a likely environmental influence.
Background Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), emerged in Wuhan, China, in late 2019 and created a global pandemic that overwhelmed healthcare systems. COVID-19, as of July 3, 2021, yielded 182 million confirmed cases and 3.9 million deaths globally according to the World Health Organization. Several patients who were initially diagnosed with mild or moderate COVID-19 later deteriorated and were reclassified to severe disease type. Objective The aim is to create a predictive model for COVID-19 ventilatory support and mortality early on from baseline (at the time of diagnosis) and routinely collected data of each patient (CXR, CBC, demographics, and patient history). Methods Four common machine learning algorithms, three data balancing techniques, and feature selection are used to build and validate predictive models for COVID-19 mechanical requirement and mortality. Baseline CXR, CBC, demographic, and clinical data were retrospectively collected from April 2, 2020, till June 18, 2020, for 5739 patients with confirmed PCR COVID-19 at King Abdulaziz Medical City in Riyadh. However, of those patients, only 1508 and 1513 have met the inclusion criteria for ventilatory support and mortalilty endpoints, respectively. Results In an independent test set, ventilation requirement predictive model with top 20 features selected with reliefF algorithm from baseline radiological, laboratory, and clinical data using support vector machines and random undersampling technique attained an AUC of 0.87 and a balanced accuracy of 0.81. For mortality endpoint, the top model yielded an AUC of 0.83 and a balanced accuracy of 0.80 using all features with balanced random forest. This indicates that with only routinely collected data our models can predict the outcome with good performance. The predictive ability of combined data consistently outperformed each data set individually for intubation and mortality. For the ventilator support, chest X-ray severity annotations alone performed better than comorbidity, complete blood count, age, or gender with an AUC of 0.85 and balanced accuracy of 0.79. For mortality, comorbidity alone achieved an AUC of 0.80 and a balanced accuracy of 0.72, which is higher than models that use either chest radiograph, laboratory, or demographic features only. Conclusion The experimental results demonstrate the practicality of the proposed COVID-19 predictive tool for hospital resource planning and patients’ prioritization in the current COVID-19 pandemic crisis.
Background Survival rates for breast cancer (BC) have improved, but quality of life post-diagnosis/treatment can be adversely affected, with survivors reporting a constellation of psychoneurological symptoms (PNS) including stress, anxiety, depression, pain, fatigue, sleep disturbance, and cognitive dysfunction. Methods To assess a potential relationship between telomere length (TL) and the development/persistence of PNS, we longitudinally studied 70 women (ages 23–71) with early stage BC (I-IIIA) at 5 time-points: prior to treatment (baseline), the mid-point of their chemotherapy cycle, 6 months, 1 year, and 2 years following the initiation of chemotherapy. Measures quantified included assessments of each of the PNS noted above and TL [using both a multiplex qPCR assay and a chromosome-specific fluorescence in situ hybridization (FISH) assay]. Results Variables associated with qPCR mean TLs were age (p = 0.004) and race (T/S ratios higher in Blacks than Whites; p = 0.019). Significant differences (mostly decreases) in chromosome-specific TLs were identified for 32 of the 46 chromosomal arms at the mid-chemo time-point (p = 0.004 to 0.049). Unexpectedly, the sequential administration of doxorubicin [Adriamycin], cyclophosphamide [Cytoxan], and docetaxel [Taxotere] (TAC regimen) was consistently associated with higher TLs, when compared to TLs in women receiving a docetaxel [Taxotere], Carboplatin [Paraplatin], and trastuzumab [Herceptin] [TCH] chemotherapy regimen [association was shown with both the qPCR and FISH assays (p = 0.036)]. Of the PNS, pain was significantly negatively associated with TL (higher pain; shorter telomeres) for a subset of chromosomal arms (5q, 8p, 13p, 20p, 22p, Xp, Xq) (p = 0.014–0.047). Chromosomal TLs were also associated with 7 of the 8 cognitive domains evaluated, with the strongest relationship being noted for chromosome 17 and the visual memory domain (shorter telomeres; lower scores). Conclusions We showed that race and age were significantly associated with telomere length in women treated for early stage BC and that acquired telomere alterations differed based on the woman’s treatment regimen. Our study also demonstrated that pain and cognitive domain measures were significantly related to telomere values in this study cohort. Expanding upon the knowledge gained from this longitudinal study could provide insight about the biological cascade of events that contribute to PNS related to BC and/or its treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.