Self-driving automobiles are prominent in science and technology, which affect social and economic development. Deep learning (DL) is the most common area of study in artificial intelligence (AI). In recent years, deep learning-based solutions have been presented in the field of self-driving cars and have achieved outstanding results. Different studies investigated a variety of significant technologies for autonomous vehicles, including car navigation systems, path planning, environmental perception, as well as car control. End-to-end learning control directly converts sensory data into control commands in autonomous driving. This research aims to identify the most accurate pre-trained Deep Neural Network (DNN) for predicting the steering angle of a self-driving vehicle that is suitable to be applied to embedded automotive technologies with limited performance. Three well-known pre-trained models were compared in this study: AlexNet, ResNet18, and DenseNet121. Transfer learning was utilized by modifying the final layer of pre-trained models in order to predict the steering angle of the vehicle. Experiments were conducted on the dataset collected from two different tracks. According to the study's findings, ResNet18 and DenseNet121 have the lowest error percentage for steering angle values. Furthermore, the performance of the modified models was evaluated on predetermined tracks. ResNet18 outperformed DenseNet121 in terms of accuracy, with less deviation from the center of the track, while DenseNet121 demonstrated greater adaptability across multiple tracks, resulting in better performance consistency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.