Brain imaging techniques play an important role in determining the causes of brain cell injury. Therefore, earlier diagnosis of these diseases can be led to give rise to bring huge benefits in improving treatment possibilities and avoiding any potential complications that may occur to the patient. Recently, brain tumor segmentation has become a common task in medical image analysis due to its efficacy in diagnosing the type, size, and location of the tumor in automatic methods. Several researches have developed new methods in order to obtain the best results in brain tumor segmentation, including using deep learning techniques such as the convolutional neural network (CNN). The goal of this survey is to present a brief overview of MRI modalities and discuss common methods of brain tumor segmentation from MRI images, including brain tumor segmentation using deep learning techniques, as well as the most important contributions in this field, which have shown significant improvements in recent years. Finally, we focused in summary on the building blocks of the convolutional neural network (CNN) algorithms used for image segmentation. the entire survey methodology, it has been observed that hybrid techniques and CNN-based segmentation are more effective for brain tumor segmentation from MRI images.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.