Herein we review the state-of-the-art in tissue engineering for repair of articular cartilage. Firstly, we describe the molecular, cellular and histologic structure and function of endogenous cartilage, focusing on chondrocytes, collagens, extracellular matrix (ECM) and proteoglycans. We then explore in vitro cell culture on scaffolds, discussing the difficulties involved in maintaining or obtaining a chondrocytic phenotype. Next, we discuss the diverse compounds and designs used for these scaffolds, including natural and synthetic biomaterials and porous, fibrous and multilayer architectures. We then report on the mechanical properties of different cell-loaded scaffolds, and the success of these scaffolds following in vivo implantation in small animals, in terms of generating tissue that structurally and functionally resembles native tissue. Lastly, we highlight future trends in this field. We conclude that, despite major technical advances made over the past 15 years, and continually improving results in cartilage repair experiments in animals, the development of clinically useful implants for regeneration of articular cartilage remains a challenge.
(1) Background: doxorubicin is a potent chemotherapeutic agent, but it has limitations regarding its side effects and therapy resistance. Hydrogels potentially deal with these problems, but several characterizations need to be optimized to better understand how hydrogel assisted chemotherapy works. Poloxamer 407 (P407) hydrogels were mixed with doxorubicin and physico-chemical, biological, and pharmacological characterizations were considered. (2) Methods: hydrogels were prepared by mixing P407 in PBS at 4 °C. Doxorubicin was added upon solutions became clear. Time-to-gelation, hydrogel morphology, and micelles were studied first. The effects of P407-doxorubicin were evaluated on MC-38 colon cancer cells. Furthermore, doxorubicin release was assessed and contrasted with non-invasive in vivo whole body fluorescence imaging. (3) Results: 25% P407 had favorable gelation properties with pore sizes of 30–180 µm. P407 micelles were approximately 5 nm in size. Doxorubicin was fully released in vitro from 25% P407 hydrogel within 120 h. Furthermore, P407 micelles strongly enhanced the anti-neoplastic effects of doxorubicin on MC-38 cells. In vivo fluorescence imaging revealed that hydrogels retained fluorescence signals at the injection site for 168 h. (4) Conclusions: non-invasive imaging showed how P407 gels retained drug at the injection site. Doxorubicin P407 micelles strongly enhanced the anti-tumor effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.