The human immunodeficiency virus type 1 (HIV-1) epidemic has negatively affected over 40 million people worldwide. Antiretroviral therapy (ART) has improved life expectancy and changed the outcome of HIV-1 infection, making it a chronic and manageable disease. However, AIDS and non-AIDS comorbid illnesses persist during the course of infection despite the use of ART. In addition, the development of neuropsychiatric comorbidities (including depression) by HIV-infected subjects significantly affects quality of life, medication adherence, and disease prognosis. The factors associated with depression during HIV-1 infection include altered immune response, the release of pro-inflammatory cytokines, and monoamine imbalance. Elevated plasma pro-inflammatory cytokine levels contribute to the development of depression and depressive-like behaviors in HIV+ subjects. In addition, comorbid depression influences the decline rates of CD4+ cell counts and increases plasma viral load. Depression can manifest in some subjects despite their adherence to ART. In addition, psychosocial factors related to stigma (negative attitudes, moral issues, and abuse of HIV+ subjects) are also associated with depression. Both neurobiological and psychosocial factors are important considerations for the effective clinical management of HIV and the prevention of HIV disease progression.
The E2F1, E2F2, and E2F3a transcriptional activators control proliferation. However, how the E2F activators regulate mitosis to maintain genomic integrity is unclear. Centrosome amplification (CA) and unregulated spindle assembly checkpoint (SAC) are major generators of aneuploidy and chromosome instability (CIN) in cancer. Previously, we showed that overexpression of single E2F activators induced CA and CIN in mammary epithelial cells, and here we show that combined overexpression of E2F activators did not enhance CA. Instead, the E2F activators elevated expression of multiple mitotic regulators, including Sgo1, Nek2, Hec1, BubR1, and Mps1/TTK. cBioPortal analyses of the TCGA database showed that E2F overexpression in lobular invasive breast tumors correlates with overexpression of multiple regulators of chromosome segregation, centrosome homeostasis, and the SAC. Kaplan-Meier plots identified correlations between individual or combined overexpression of E2F1, E2F3a, Mps1/TTK, Nek2, BubR1, or Hec1 and poor overall and relapse-free survival of breast cancer patients. In MCF10A normal mammary epithelial cells co-overexpressing E2Fs, transient Sgo1 knockdown induced CA, high percentages of premature sister chromatid separation, chromosome losses, increased apoptosis, and decreased cell clonogenicity. BubR1 silencing resulted in chromosome losses without CA, demonstrating that Sgo1 and BubR1 maintain genomic integrity through two distinct mechanisms. Our results suggest that deregulated activation of the E2Fs in mammary epithelial cells is counteracted by activation of a Sgo1-dependent mitotic checkpoint.
E2F3 is a transcription factor that may initiate tumorigenesis if overexpressed. Previously, we demonstrated that E2F3 mRNA is overexpressed in breast cancer and that E2F3 overexpression results in centrosome amplification and unregulated mitosis, which can promote aneuploidy and chromosome instability to initiate and sustain tumors. Further, we demonstrated that E2F3 leads to overexpression of the mitotic regulator Shugoshin-1, which until recently had unknown roles in cancer. This study aims to evaluate the roles of E2F3 and Shugoshin-1 in breast cancer metastatic potential. Here we demonstrated that E2F3 and Shugoshin-1 silencing leads to reduced cell invasion and migration in two mesenchymal triple-negative breast cancer (TNBC) cell lines (MDA-MB-231 and Hs578t). Moreover, E2F3 and Shugoshin-1 modulate the expression of epithelial-to-mesenchymal transition-associated genes such as Snail, E-Cadherin, and multiple matrix metalloproteinases. Furthermore, E2F3 depletion leads to reductions in tumor growth and metastasis in NOD- scid Gamma mice. Results from this study suggest a key role for E2F3 and a novel role for Shugoshin-1 in metastatic progression. These results can further help in the improvement of TNBC targeted therapies by interfering with pathways that intersect with the E2F3 and Shugoshin-1 signaling pathways.
The centrosome, an organelle discovered >100 years ago, is the main microtubule-organizing center in mammalian organisms. The centrosome is composed of a pair of centrioles surrounded by the pericentriolar material (PMC) and plays a major role in the regulation of cell cycle transitions (G1-S, G2-M, and metaphase-anaphase), ensuring the normality of cell division. Hundreds of proteins found in the centrosome exert a variety of roles, including microtubule dynamics, nucleation, and kinetochore–microtubule attachments that allow correct chromosome alignment and segregation. Errors in these processes lead to structural (shape, size, number, position, and composition), functional (abnormal microtubule nucleation and disorganized spindles), and numerical (centrosome amplification [CA]) centrosome aberrations causing aneuploidy and genomic instability. Compelling data demonstrate that centrosomes are implicated in cancer, because there are important oncogenic and tumor suppressor proteins that are localized in this organelle and drive centrosome aberrations. Centrosome defects have been found in pre-neoplasias and tumors from breast, ovaries, prostate, head and neck, lung, liver, and bladder among many others. Several drugs/compounds against centrosomal proteins have shown promising results. Other drugs have higher toxicity with modest or no benefits, and there are more recently developed agents being tested in clinical trials. All of this emerging evidence suggests that targeting centrosome aberrations may be a future avenue for therapeutic intervention in cancer research.
Nek2 (NIMA‐related kinase 2) is a serine/threonine-protein kinase that localizes to centrosomes and kinetochores, controlling centrosome separation, chromosome attachments to kinetochores, and the spindle assembly checkpoint. These processes prevent centrosome amplification (CA), mitotic dysfunction, and chromosome instability (CIN). Our group and others have suggested that Nek2 maintains high levels of CA/CIN, tumor growth, and drug resistance. We identified that Nek2 overexpression correlates with poor survival of breast cancer. However, the mechanisms driving these phenotypes are unknown. We now report that overexpression of Nek2 in MCF10A cells drives CA/CIN and aneuploidy. Besides, enhanced levels of Nek2 results in larger 3D acinar structures, but could not initiate tumors in a p53+/+ or a p53−/− xenograft model. Nek2 overexpression induced the epithelial-to-mesenchymal transition (EMT) while its downregulation reduced the expression of the mesenchymal marker vimentin. Furthermore, either siRNA-mediated downregulation or INH6’s chemical inhibition of Nek2 in MDA-MB-231 and Hs578t cells showed important EMT changes and decreased invasion and migration. We also showed that Slug and Zeb1 are involved in Nek2 mediated EMT, invasion, and migration. Besides its role in CA/CIN, Nek2 contributes to breast cancer progression through a novel EMT mediated mechanism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.