Social encounters are associated with varying degrees of emotional arousal and stress. The mechanisms underlying adequate socioemotional balance are unknown. The medial amygdala (MeA) is a brain region associated with social behavior in mice. Corticotropin-releasing factor receptor type-2 (CRF-R2) and its specific ligand urocortin-3 (Ucn3), known components of the behavioral stress response system, are highly expressed in the MeA. Here we show that mice deficient in CRF-R2 or Ucn3 exhibit abnormally low preference for novel conspecifics. MeA-specific knockdown of Crfr2 (Crhr2) in adulthood recapitulated this phenotype. In contrast, pharmacological activation of MeA CRF-R2 or optogenetic activation of MeA Ucn3 neurons increased preference for novel mice. Furthermore, chemogenetic inhibition of MeA Ucn3 neurons elicited pro-social behavior in freely behaving groups of mice without affecting their hierarchal structure. These findings collectively suggest that the MeA Ucn3-CRF-R2 system modulates the ability of mice to cope with social challenges.
Risk factors for suicidal behaviors are partly heritable, including genetic variants that drive diathesis-stress in addition to, or by interaction with, exposure to certain stressful life events (SLEs). Hypothalamic-pituitary-adrenal (HPA) axis regulatory genes are candidates for association with suicide as well as its endophenotypes. Using a family-based design of offspring who attempted suicide (SA) and both parents, we investigated gene-environment interactions (G×Es) of SLE exposures with single nucleotide polymorphisms (SNPs) in corticotropin-releasing hormone receptor-1 (CRHR1), a major HPA axis regulatory gene. We observed a novel G×E among predominantly female SA between 5 -SNP rs7209436 and childhood/adolescence physical assault or attack (PA), as well as a second novel and male-specific G×E between 3 -SNP rs16940665 and adulthood PA exposure. A third male-specific G×E previously reported by us among depressed SA, between SNP rs4792887 and cumulative SLEs, was also further confirmed. The two novel G×Es presented here shared the SA characteristic of aggression, while showing differences on other aspects of SA heterogeneity. We conclude that different SA subjects were observed to differentially associate with two novel G×Es involving exposures to PA with different life timing and SNPs located in opposite ends of CRHR1. Concerning sex differences, we observed three subsets of distinct male SA that associated with each of the three observed G×Es, whereas female SAs were affected by only one of the G×Es. These results are consistent with a diathesis-stress model of suicidal behavior and may help to explain SA heterogeneity.
The complex etiology of suicidal behavior has frequently been investigated in relation to monoaminergic neurotransmission, but other neurosystems have shown alterations as well, involving excitatory glutamatergic and inhibitory γ-aminobutyric acid (GABA) molecular components, together with the modulating polyamines. Sufficiently powered and family-based association studies of glutamatergic and GABAergic genes with suicidal behavior are nonexistent, but several studies have been reported for polyamines. We therefore conducted, for the first time ever, an extensive family-based study of 113 candidate single-nucleotide polymorphisms (SNPs) located in 24 glutamatergic and GABA genes, in addition to interrelated polyaminergic genes, on the outcome of severe suicide attempts (SAs). The family-based analysis (n=660 trios) was supplemented with gene-environment interaction (G × E), case-control (n=519 controls) and subgroup analyses. The main observations were the previously unreported association and linkage of SNPs rs2268115 and rs220557 in GRIN2B, as well as of SNPs rs1049500 and rs2302614 in ODC1 (P<10(-2)). Furthermore, GRIN2B haplotypic associations were observed, in particular with a four-SNP AGGC haplotype (rs1805247-rs1806201-rs1805482-rs2268115; P<10(-5)), and a third SNP rs7559979 in ODC1 showed G × E with serious childhood/adolescent physical assault (P<10(-4)). SA subjects were characterized by transdiagnostic trait anger and past year alcohol-drug use disorders, but not by alcohol-drug use at SA, depression, anxiety or psychosis diagnoses. We also discuss a first ever confirmatory observation of SNP rs6526342 (polyaminergic SAT1) in SA, originally identified in completed suicides. The results suggest that specific genetic variants in a subset of glutamatergic (GRIN2B) and polyaminergic (ODC1) neurosystem genes may be of importance in certain suicidal subjects.
While suicidal behavior is frequently accompanied by serotonergic system alterations, specific associations with genetic variation in the serotonin 2A receptor (HTR2A) gene have been inconsistent. Using a family-based study design of 660 offspring who have made a suicide attempt (SA) and both parents, we conducted an association and linkage analysis using single-nucleotide polymorphisms (SNPs) with extensive gene coverage, and included the study of parent-of-origin (POE) and gene-environment interaction (G × E), also using previously unstudied exposures. The main finding was a G × E between the exon 1 SNP rs6313 and exposure to cumulative types of lifetime stressful life events (SLEs), driven by overtransmission of CT and undertransmission of TT, both in relation to other genotypes. Further exploratory analysis revealed a significant POE in this G × E in female subjects, which followed a polar overdominant inheritance pattern. In addition, rs6310 and rs6305 were found to significantly associate with SA in the total sample. A G × E in female subjects (rs7322347 × physical assault in childhood/adolescence) confirmed features of a previously observed association with SA. Other potentially interesting nominally significant findings were observed, but like the G × E of rs7322347 did not pass a false-discovery rate cutoff. Taken together, this study found multiple associations of HTR2A SNPs on SA, with strongest statistical evidence for a G × E involving rs6313, and further suggested the importance of taking into account different inheritance patterns and G × Es with regard to HTR2A.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.