The multiple-sets split feasibility problem requires to find a point closest to a family of closed convex sets in one space such that its image under a linear transformation will be closest to another family of closed convex sets in the image space. It can be a model for many * Accepted for publication in the journal Inverse Problems. 1 inverse problems where constraints are imposed on the solutions in the domain of a linear operator as well as in the operator's range. It generalizes the convex feasibility problem as well as the two-sets split feasibility problem. We propose a projection algorithm that minimizes a proximity function that measures the distance of a point from all sets. The formulation, as well as the algorithm, generalize earlier work on the split feasibility problem. We offer also a generalization to proximity functions with Bregman distances. Application of the method to the inverse problem of intensity-modulated radiation therapy (IMRT) treatment planning is studied in a separate companion paper and is here only briefly described.
We propose and study a unified model for handling dose constraints (physical dose, equivalent uniform dose (EUD), etc) and radiation source constraints in a single mathematical framework based on the split feasibility problem. The model does not impose on the constraints an exogenous objective (merit) function. The optimization algorithm minimizes a weighted proximity function that measures the sum of the squares of the distances to the constraint sets. This guarantees convergence to a feasible solution point if the split feasibility problem is consistent (i.e., has a solution), or, otherwise, convergence to a solution that minimally violates the physical dose constraints and EUD constraints. We present computational results that demonstrate the validity of the model and the power of the proposed algorithmic scheme.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.