We study the stability and instability of the Gaussian logarithmic Sobolev inequality, in terms of covariance, Wasserstein distance and Fisher information, addressing several open questions in the literature. We first establish an improved logarithmic Sobolev inequality which is at the same time scale invariant and dimension free. As a corollary, we show that if the covariance of the measure is bounded by the identity, one may obtain a sharp and dimension-free stability bound in terms of the Fisher information matrix. We then investigate under what conditions stability estimates control the covariance, and when such control is impossible. For the class of measures whose covariance matrix is dominated by the identity, we obtain optimal dimension-free stability bounds which show that the deficit in the logarithmic Sobolev inequality is minimized by Gaussian measures, under a fixed covariance constraint. On the other hand, we construct examples showing that without the boundedness of the covariance, the inequality is not stable. Finally, we study stability in terms of the Wasserstein distance, and show that even for the class of measures with a bounded covariance matrix, it is hopeless to obtain a dimension-free stability result. The counterexamples provided motivate us to put forth a new notion of stability, in terms of proximity to mixtures of the Gaussian distribution. We prove new estimates (some dimension-free) based on this notion. These estimates are strictly stronger than some of the existing stability results in terms of the Wasserstein metric. Our proof techniques rely heavily on stochastic methods.
At the heart of convex geometry lies the observation that the volume of convex bodies behaves as a polynomial. Many geometric inequalities may be expressed in terms of the coefficients of this polynomial, called mixed volumes. Among the deepest results of this theory is the Alexandrov-Fenchel inequality, which subsumes many known inequalities as special cases. The aim of this note is to give new proofs of the Alexandrov-Fenchel inequality and of its matrix counterpart, Alexandrov's inequality for mixed discriminants, that appear conceptually and technically simpler than earlier proofs and clarify the underlying structure. Our main observation is that these inequalities can be reduced by the spectral theorem to certain trivial "Bochner formulas".
Contraction properties of transport maps between probability measures play an important role in the theory of functional inequalities. The actual construction of such maps, however, is a non-trivial task and, so far, relies mostly on the theory of optimal transport. In this work, we take advantage of the infinite-dimensional nature of the Gaussian measure and construct a new transport map, based on the Föllmer process, which pushes forward the Wiener measure onto probability measures on Euclidean spaces. Utilizing the tools of the Malliavin and stochastic calculus in Wiener space, we show that this Brownian transport map is a contraction in various settings where the analogous questions for optimal transport maps are open.The contraction properties of the Brownian transport map enable us to prove functional inequalities in Euclidean spaces, which are either completely new or improve on current results. Further and related applications of our contraction results are the existence of Stein kernels with desirable properties (which lead to new central limit theorems), as well as new insights into the Kannan-Lovász-Simonovits conjecture.We go beyond the Euclidean setting and address the problem of contractions on the Wiener space itself. We show that optimal transport maps and causal optimal transport maps (which are related to Brownian transport maps) between the Wiener measure and other target measures on Wiener space exhibit very different behaviors.1 The Wiener measure γ is such that Ω ∋ ω ∼ γ is a standard Brownian motion in R d where Ω is the classical Wiener space of continuous paths in R d parameterized by time t ∈ [0, 1].
We prove new Lipschitz properties of the transport map along heat flows, constructed by Kim and Milman. For (semi)-log-concave measures and Gaussian mixtures, our bounds have several applications: eigenvalue comparison, dimensional functional inequalities, and domination of distribution functions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.