Micro-estuarine ecosystems have a surface area < km and are abundant in Mediterranean 17 regions. As a result of their small size, these systems are particularly vulnerable to effects of 18 chemical pollution. Due to fluctuating flow conditions of base-flow dominated by treated 19 wastewater effluents and flood events transporting rural and urban non-point-source pollution, 20 micro-estuaries are under a dynamic risk regime, consequently, struggling to provide 21 ecological services. This two-year study explored the occurrence and risks of pharmaceutical 22 contamination in the Alexander micro-estuary in Israel. Pharmaceuticals were detected in all 23 samples (n=280) at as high as 18 µg L -1 in flood events and 14 µg L -1 in base-flow.Pharmaceutical mixtures composition was affected by flow conditions with carbamazepine dominating base-flow and caffeine dominating flood events. Median annual risk quotients for fish, crustaceans and algae were 19.6, 5.2, and 4.5, indicating that pharmaceuticals pose high risk to the ecosystem. Ibuprofen, carbamazepine and caffeine were contribute most to the risk quotients. The current work highlights that micro-estuary ecosystems, like the Alexander estuary, are continuously exposed to pharmaceuticals and most likely to other pollutants, placing these ecologically important systems under an elevated risk, in comparison to the more frequently studied large estuarine systems.
Micro-estuaries in semi-arid areas, despite their small size (shallow depth of a few meters, length of a few kilometers, and a surface area of less than 1 km 2 ) are important providers of ecosystem services. Despite their high abundance, tendency to suffer from eutrophication and vulnerability to other anthropogenic impacts, such systems are among the least studied water bodies in the world. In low tidal amplitude regions, micro-estuaries often have limited rate of sea-river water exchange, somewhat similar to fjord circulation, caused by a shallow sandbar forming at the coastline. The longterm study, we report here was inspired by the idea that, due to their small size and low discharges regime, relatively small interventions can have large effects on micro-estuaries. We used a stationary array of sensors and detailed monthly water sampling to characterize the Alexander estuary, a typical micro-estuary in the S.E. Mediterranean, and to identify the main stress factors in this aquatic ecosystem. The Alexander micro-estuary is stratified throughout the year with median bottom salinity of 18 PSU. Prolonged periods of hypoxia were identified as the main stress factor. Those were alleviated by breaching of the sandbar at the estuary mouth by sea-waves or stormwater runoff events (mostly during winter) that flush the anoxic bottom water. Analysis of naturally occurring sandbar breaches, and an artificial breach experiment indicate that the current oxygen consumption rate of the Alexander micro-estuary is too high to consider sandbar breaches as a remedy for the anoxia. Nevertheless, it demonstrates and provides the tools to assess the feasibility of small-scale interventions to control micro-estuaries hydrology and biogeochemistry.
Ruppin's Estuarine and Coastal Observatory (RECO) is a Long-Term Ecological Research station positioned on the East Mediterranean shoreline between Tel-Aviv and Haifa, Israel. We present a comprehensive online database and an accompanying website that provides direct access to the physical, chemical, and biological characteristics of the local coastal marine ecosystem and the Alexander micro estuary. It includes three databases that are updated continuously since 2014: a) In situ stationary sensors data (10 min intervals) of surface and bottom temperature, salinity, oxygen and water level measured at three stations along the estuary. b) Monthly profiles and discrete biogeochemical samples (surface and bottom water) of multiple parameters at four stations located at the inland part of the estuary. Measured parameters include concentrations of chlorophyll-a, microalgae and bacteria (counted with a flow cytometer), Nitrate, Nitrite, Ammonium, Phosphate, total N, total P, particulate organic matter (POM), total suspended solids (TSS), biochemical oxygen demand (BOD), as well as Secchi depth in each station c) Bi-weekly profiles, chlorophyll-a concentrations and cell counts at two marine stations adjacent to the estuary, (1, and 7 Km from the estuary mouth, at bottom depths of 8 and 48 m). The database also includes historical data for the Taninim micro-estuary (2014–2016). The RECO observatory provides a unique data set documenting the interaction of highly eutrophicated estuarine water with the ultra-oligotrophic seawater of the Eastern Mediterranean. This combination results in sharp gradients of salinity, temperature, dissolved oxygen, and nutrients over very small scales (centimeters to meters) and therefore offers an important data set for the coastal shelf research community. The data set also provide a long-term baseline of the estuary hydrography and geochemistry with the hope to foster effective science-based management and environmental planning of this and similar systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.