In this paper, we consider the problem of blind estimation of states and topology (BEST) in power systems. We use the linearized DC model of real power measurements with unknown voltage phases (i.e. states) and an unknown admittance matrix (i.e. topology) and show that the BEST problem can be formulated as a blind source separation (BSS) problem with a weighted Laplacian mixing matrix. We develop the constrained maximum likelihood (ML) estimator of the Laplacian matrix for this graph BSS (GBSS) problem with Gaussian-distributed states. The ML-BEST is shown to be only a function of the states' second-order statistics. Since the topology recovery stage of the ML-BEST approach results in a high-complexity optimization problem, we propose two low-complexity methods to implement it: (1) Two-phase topology recovery, which is based on solving the relaxed convex optimization and then finding the closest Laplacian matrix, and (2) Augmented Lagrangian topology recovery. We derive a closed-form expression for the associated Cramér-Rao bound (CRB) on the topology matrix estimation. The performance of the proposed methods is evaluated for the IEEE-14 bus test-case system and for a random network. It is shown that, asymptotically, the state estimation performance of the proposed ML-BEST methods coincides with the oracles minimum mean-squared-error (MSE) state estimator, and the MSE of the topology estimation achieves the proposed CRB.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.