Existing epidemiological evidence regarding the potential role of (poly)phenol intake in prostate cancer (PCa) risk is scarce and, in the case of flavonoids, it has been suggested that their intake may increase PCa risk. We investigated the associations between the intake of the total and individual classes and subclasses of (poly)phenols and the risk of PCa, including clinically relevant subtypes. The European Prospective Investigation into Cancer and Nutrition (EPIC) cohort included 131,425 adult men from seven European countries. (Poly)phenol intake at baseline was assessed by combining validated center/country-specific dietary questionnaires and the Phenol-Explorer database. Multivariable-adjusted Cox proportional hazards models were used to estimate the hazard ratios (HR) and 95% confidence intervals (CI). In total, 6939 incident PCa cases (including 3501 low-grade and 710 high-grade, 2446 localized and 1268 advanced, and 914 fatal Pca cases) were identified during a mean follow-up of 14 years. No associations were observed between the total intake of (poly)phenols and the risk of PCa, either overall (HRlog2 = 0.99, 95% CI 0.94–1.04) or according to PCa subtype. Null associations were also found between all classes (phenolic acids, flavonoids, lignans, and stilbenes) and subclasses of (poly)phenol intake and the risk of PCa, overall and according to PCa subtype. The results of the current large prospective cohort study do not support any association between (poly)phenol intake and PCa incidence.
In the present study, the aim was to investigate the correlation between the acute and habitual dietary intake of flavanones, their main food sources and the concentrations of aglycones naringenin and hesperetin in 24 h urine in a European population. A 24-h dietary recall (24-HDR) and a 24-h urine sample were collected the same day from a subsample of 475 people from four different countries of the European Prospective Investigation into Cancer and Nutrition study. Acute and habitual dietary data were captured through a standardised 24-HDR and a country/centre-specific validated dietary questionnaire (DQ). The intake of dietary flavanones was estimated using the Phenol-Explorer database. Urinary flavanones (naringenin and hesperetin) were analysed using tandem MS with a previous enzymatic hydrolysis. Weak partial correlation coefficients were found between urinary flavanone concentrations and both acute and habitual dietary flavanone intakes (Rpartial = 0·14–0·17). Partial correlations were stronger between urinary excretions and acute intakes of citrus fruit and juices (Rpartial ∼ 0·6) than with habitual intakes of citrus fruit and juices (Rpartial ∼ 0·24). In conclusion, according to our results, urinary excretion of flavanones can be considered a good biomarker of acute citrus intake. However, low associations between habitual flavanone intake and urinary excretion suggest a possible inaccurate estimation of their intake or a too sporadic intake. For assessing habitual exposures, multiple urinary collections may be needed. These results show that none of the approaches tested is ideal, and the use of both DQ and biomarkers can be recommended.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.