Recently, with the enormous growth of online videos, fast video retrieval research has received increasing attention. As an extension of image hashing techniques, traditional video hashing methods mainly depend on hand-crafted features and transform the realvalued features into binary hash codes. As videos provide far more diverse and complex visual information than images, extracting features from videos is much more challenging than that from images. Therefore, high-level semantic features to represent videos are needed rather than low-level hand-crafted methods. In this paper, a deep convolutional neural network is proposed to extract high-level semantic features and a binary hash function is then integrated into this framework to achieve an end-to-end optimization. Particularly, our approach also combines triplet loss function which preserves the relative similarity and difference of videos and classification loss function as the optimization objective. Experiments have been performed on two public datasets and the results demonstrate the superiority of our proposed method compared with other state-of-the-art video retrieval methods.
In this work, we propose a framework for singleview hand mesh reconstruction, which can simultaneously achieve high reconstruction accuracy, fast inference speed, and temporal coherence. Specifically, for 2D encoding, we propose lightweight yet effective stacked structures. Regarding 3D decoding, we provide an efficient graph operator, namely depth-separable spiral convolution. Moreover, we present a novel feature lifting module for bridging the gap between 2D and 3D representations. This module starts with a map-based position regression (MapReg) block to integrate the merits of both heatmap encoding and position regression paradigms to improve 2D accuracy and temporal coherence. Furthermore, MapReg is followed by pose pooling and pose-to-vertex lifting approaches, which transform 2D pose encodings to semantic features of 3D vertices. Overall, our hand reconstruction framework, called MobRecon, comprises affordable computational costs and miniature model size, which reaches a high inference speed of 83FPS on Apple A14 CPU. Extensive experiments on popular datasets such as FreiHAND, RHD, and HO3Dv2 demonstrate that our MobRecon achieves superior performance on reconstruction accuracy and temporal coherence. Our code is publicly available at https://github. com/SeanChenxy/HandMesh.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.