Genome-wide association studies have identified common variants associated with risk of esophageal squamous cell carcinoma (ESCC). However, these common variants cannot explain all heritability of ESCC. Here we report an exome-wide interrogation of 3,714 individuals with ESCC and 3,880 controls for low-frequency susceptibility loci, with two independent replication samples comprising 7,002 cases and 8,757 controls. We found six new susceptibility loci in CCHCR1, TCN2, TNXB, LTA, CYP26B1 and FASN (P = 7.77 × 10 to P = 1.49 × 10), and three low-frequency variants had relatively high effect size (odds ratio > 1.5). Individuals with the rs138478634-GA genotype had significantly lower levels of serum all-trans retinoic acid, an anticancer nutrient, than those with the rs138478634-GG genotype (P = 0.0004), most likely due to an enhanced capacity of variant CYP26B1 to catabolize this agent. These findings emphasize the important role of rare coding variants in the development of ESCC.
Genome-wide association studies (GWASs) have identified multiple susceptibility loci of colorectal cancer (CRC), however, causative polymorphisms have not been fully elucidated. Long non-coding RNAs (lncRNAs) are a recently discovered class of non-protein coding RNAs that involved in a wide variety of biological processes. We hypothesized that single nucleotide polymorphisms (SNPs) in lncRNA may associate with the CRC risk by influencing lncRNA functions. To evaluate the effects of SNPs on CRC susceptibility in Chinese populations, we first screened out all potentially functional SNPs in exons of lncRNAs located in CRC susceptibility loci identified by GWAS. Eight SNPs were selected and genotyped in 875 CRC cases and 855 controls and replicated in an independent case-control study consisting of 768 CRC cases and 768 controls. Analyses showed that CG and GG genotypes of the rs2147578 were significantly associated with increased risk for CRC occurrence in both case-control studies [combined analysis OR = 1.29; 95% confidence interval (CI) = 1.11-1.51, P = 0.001] compared to the rs2147578 CC genotype. Bioinformatics analyses showed that rs2147578 is located in the transcript of lnc-LAMC2-1:1 and could influence the binding of lnc-LAMC2-1:1/miR-128-3p. Further luciferase reporter assays demonstrated that the construct with the risk rs2147578G allele had relatively high expression activity compared with that of the rs2147578C allele. Expression quantitative trait loci analyses also showed that rs2147578 is correlated with the expression of a well established oncogene LAMC2 (laminin subunit gamma 2). These findings indicated that rs2147578 in lnc-LAMC2-1:1 might be a genetic modifier for the development of CRC.
AbstractN 6-methyladenosine (m6A) is an abundant modification in RNAs that affects RNA metabolism, and it is reported to be closely related to cancer occurrence and metastasis. In this study, we focused on evaluating the associations between genetic variants in m6A modification genes and the risk of esophageal squamous-cell carcinoma (ESCC). By integrating data of our previous genome-wide association studies and the predictions of several annotation tools, we identified a single nucleotide polymorphism, rs2416282 in the promoter of YTHDC2, that was significantly associated with the susceptibility of ESCC (odds ratio = 0.84, 95% CI: 0.77–0.92, P = 2.81 × 10−4). Through further functional experiments in vitro, we demonstrated that rs2416282 regulated YTHDC2 expression. Knockdown of YTHDC2 substantially promoted the proliferation rate of ESCC cells by affecting several cancer-related signaling pathways. Our results suggested that rs2416282 contributed to ESCC risk by regulating YTHDC2 expression. This study provided us a valuable insight into the roles of genetic variants in m6A modification genes for ESCC susceptibility and may contribute to the prevention of this disease in the future.
Genome-wide association studies (GWASs) have identified multiple single nucleotide polymorphisms (SNPs) associated with colorectal cancer (CRC) susceptibility. However, the elucidation of causal SNPs and the biological mechanisms behind are still limited. In this study, we initially performed systematic bioinformatics analyses on CRC GWAS-identified loci to seek for potential functional SNPs located at transcription factor binding sites (TFBSs), and then a two-stage case-control study comprised of 1353 cases and 1448 controls of Chinese populations and functional analyses were conducted. As a result, only one SNP rs6695837 out of the nine candidate SNPs survived after two-stage analyses by Bonferroni correction. In combined analyses, rs6695837 exhibited significant associations with CRC risk (TT: CC, odds ratio (OR) = 1.31, 95% confidence interval (CI) = 1.06-1.63; dominant model, OR = 1.21, 95% CI = 1.03-1.43; additive model, OR = 1.15, 95% CI = 1.03-1.28). Functional annotations by RegulomeDB and rSNPBase indicated its biological role and dual-luciferase reporter assays revealed a significant increase in luciferase expression for the reconstructed plasmid with rs6695837T allele, compared with the one with C allele (PSW480 = 0.0002, PLovo = 0.0003). Further gene expression analyses demonstrated significantly higher expression of LAMC1 gene in CRC tumor tissues than that in adjacent non-cancerous tissues (P = 0.0004). These findings strongly suggest that the functional SNP located at TFBSs, rs6695837 might contribute to CRC susceptibility, and the exact biological mechanism awaits further research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.