In this study, the kinetics of arsenite (As(III)) removal in a ferrihydrite/oxalate system under irradiation was investigated, and the effects of pH, ferrihydrite dosage, As(III) initial concentration, and oxalate concentration...
The decolorization of azo dye Orange II using a UVA-Fe3+-PMS-oxalate system was studied. A series of experiments was performed to investigate the effects of several variables, including the pH, PMS dosage, Fe3+ concentration, oxalate concentration, and coexisting anions. The results revealed that a lower pH facilitated the decolorization, and relatively high decolorization efficiency (97.5%) could be achieved within 5 min at pH 3.0. The electron paramagnetic resonance (ESR) and radical quenching experiments revealed that SO4•− played a crucial role in the decolorization of Orange II (85.8%), •OH was of secondary importance (9%), and 1O2 made a small contribution to the decolorization (5.2%). Furthermore, the formation of •OH in the experimental system strongly depended on HO2•/O2•−. These reactive oxidants were able to directly attack the azo bond of the luminescent group in Orange II and initiate the decolorization process. The efficient UVA-Fe3+-PMS-oxalate system showed great application potential in the treatment of wastewater contaminated by azo dyes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.