In this paper, we present a backward deep BSDE method applied to Forward Backward Stochastic Differential Equations (FBSDE) with given terminal condition at maturity that time-steps the BSDE backwards. We present an application of this method to a nonlinear pricing problem -the differential rates problem. To time-step the BSDE backward, one needs to solve a nonlinear problem. For the differential rates problem, we derive an exact solution of this time-step problem and a Taylor-based approximation. Previously backward deep BSDE methods only treated zero or linear generators. While a Taylor approach for nonlinear generators was previously mentioned, it had not been implemented or applied, while we apply our method to nonlinear generators and derive details and present results. Likewise, previously backward deep BSDE methods were presented for fixed initial risk factor values X0 only, while we present a version with random X0 and a version that learns portfolio values at intermediate times as well. The method is able to solve nonlinear FBSDE problems in high dimensions.
We present a pathwise deep Backward Stochastic Differential Equation (BSDE) method for Forward Backward Stochastic Differential Equations with terminal conditions that time-steps the BSDE backwards and apply it to the differential rates problem as a prototypical nonlinear problem of independent financial interest. The nonlinear equation for the backward time-step is solved exactly or by a Taylor-based approximation. This is the first application of such a pathwise backward time-stepping deep BSDE approach for problems with nonlinear generators. We extend the method to the case when the initial value of the forward components X can be a parameter rather than fixed and similarly to also learn values at intermediate times. We present numerical results for a call combination and for a straddle, the latter comparing well to those obtained by Forsyth and Labahn with a specialized PDE solver.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.