Cereal crops accumulate starch in the seed endosperm as an energy reserve. ADP-glucose pyrophosphorylase (AGPase) plays a key role in regulating starch biosynthesis in cereal seeds. The AGPase in the maize endosperm is a heterotetramer of two small subunits, encoded by Brittle2 (Bt2) gene, and two large subunits, encoded by the Shrunken2 (Sh2) gene. The two genes (Bt2, Sh2) from maize were introduced into two elite maize inbred lines, solely and in tandem, and under the control of endosperm-specific promoters for over-expression. PCR, Southern blotting, and real-time RT-PCR analysis indicated that the transgenes were integrated into the genome of transgenic plants and were over-expressed in their progeny. The over-expression of either gene enhanced AGPase activity, seed weight and starch content compared with the WT, but the amounts were lower than plants with over-expression of both Bt2 and Sh2. Developing seeds from co-expression transgenic maize plants had higher cytoplasmic AGPase activity: the 100-grain weight increased 15% over the wild type (WT), and the starch content increased to over 74% compared with the WT of 65%. These results indicate that over-expression of the genes in transgenic maize plants could improve kernel traits. This report provides a feasible approach for increasing starch content and seed weight in maize.
SummaryMaize is a globally important food, feed crop and raw material for the food and energy industry. Plant architecture optimization plays important roles in maize yield improvement. PIN‐FORMED (PIN) proteins are important for regulating auxin spatiotemporal asymmetric distribution in multiple plant developmental processes. In this study, ZmPIN1a overexpression in maize increased the number of lateral roots and inhibited their elongation, forming a developed root system with longer seminal roots and denser lateral roots. ZmPIN1a overexpression reduced plant height, internode length and ear height. This modification of the maize phenotype increased the yield under high‐density cultivation conditions, and the developed root system improved plant resistance to drought, lodging and a low‐phosphate environment. IAA concentration, transport capacity determination and application of external IAA indicated that ZmPIN1a overexpression led to increased IAA transport from shoot to root. The increase in auxin in the root enabled the plant to allocate more carbohydrates to the roots, enhanced the growth of the root and improved plant resistance to environmental stress. These findings demonstrate that maize plant architecture can be improved by root breeding to create an ideal phenotype for further yield increases.
Phosphatidylinositol (PtdIns) synthase is a key enzyme in the phospholipid pathway and catalyses the formation of PtdIns. PtdIns is not only a structural component of cell membranes, but also the precursor of the phospholipid signal molecules that regulate plant response to environment stresses. Here, we obtained transgenic maize constitutively overexpressing or underexpressing PIS from maize (ZmPIS) under the control of a maize ubiquitin promoter. Transgenic plants were confirmed by PCR, Southern blotting analysis and realtime RT-PCR assay. The electrospray ionization tandem mass spectrometry (ESI-MS/MS)-based lipid profiling analysis showed that, under drought stress conditions, the overexpression of ZmPIS in maize resulted in significantly elevated levels of most phospholipids and galactolipids in leaves compared with those in wild type (WT). At the same time, the expression of some genes involved in the phospholipid metabolism pathway and the abscisic acid (ABA) biosynthesis pathway including ZmPLC, ZmPLD, ZmDGK1, ZmDGK3, ZmPIP5K9, ZmABA1, ZmNCED, ZmAAO1, ZmAAO2 and ZmSCA1 was markedly up-regulated in the overexpression lines after drought stress. Consistent with these results, the drought stress tolerance of the ZmPIS sense transgenic plants was enhanced significantly at the preflowering stages compared with WT maize plants. These results imply that ZmPIS regulates the plant response to drought stress through altering membrane lipid composition and increasing ABA synthesis in maize.
ObjectiveTo retrospectively analyze the prognostic value of magnetic resonance imaging (MRI)-derived residual tumors after intensity-modulated radiation therapy (IMRT) in the patients with locally-advanced nasopharyngeal carcinoma.MethodsA total of 358 patients with locally-advanced nasopharyngeal carcinoma who received IMRT were classified as having residual tumors or no residual tumor based on MRI at the end of radiotherapy. The χ2 test, log-rank test, Cox proportional hazards regression model and Kaplan-Meir survival curves were used to investigate the relationship of clinicopathological features and residual tumors and to assess the prognostic value of residual tumors.ResultsThe 3-year overall survival (OS) rate was 73% in the residual tumor group and 90% in the no residual tumor group (HR 2.15, 95% CI 1.21-3.82,, P = 0.007); 3-year local relapse-free survival (LRFS) was 89% in the residual tumor group and 97% in the no residual tumor group (HR 4.46, 95% CI 1.61-12.38, P = 0.002); 3-year disease free survival (DFS) was 67% in the residual tumor group and 82% in the no residual tumor group (HR 2.21, 95% CI 1.40-3.48, P = 0.001). A high prescribed radiation dose (>73.92 Gy) did not increase the percentage volume of the GTVnx receiving 95% of the prescribed dose (GTVnx V95%) or improve any survival outcome.ConclusionThe presence of a residual tumor after IMRT was a significant negative independent prognostic factor for OS, LRFS and DFS. Although IMRT have improved the distribution of radiotherapy doses into the tumors, residual tumors detected by MRI after IMRT are still associated with poor prognosis in patients with advanced nasopharyngeal carcinoma.
Bud dormancy is an evolved trait that confers adaptation to harsh environments, and affects flower differentiation, crop yield and vegetative growth in perennials. ABA is a stress hormone and a major regulator of dormancy. Although the physiology of bud dormancy is complex, several advancements have been achieved in this field recently by using genetics, omics and bioinformatics methods. Here, we review the current knowledge on the role of ABA and environmental signals, as well as the interplay of other hormones and sucrose, in the regulation of this process. We also discuss emerging potential mechanisms in this physiological process, including epigenetic regulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.