In order to address time-consuming sample pre-treatment and separation prior to mass spectrometry (MS) identifications, highly integrated chips were developed, but damage to any functional unit in these chips would result in complete replacement. Herein, we propose a modular microfluidic platform comprising pre-treatment, liquid chromatography (LC) separation and nanoelectrospray ionization (nESI) chips for on-line enrichment, separation and nESI MS detection of pesticide metabolites and peptides. The pretreatment chip is applicable in enriching pyridalyl and its metabolites, and it achieves optimal desalination efficiency, 98.5%, for polymerase chain reaction products. Additionally, the LC separation chip was fully characterised, and it demonstrated satisfactory separation efficiency, quantification ability and pressure durability. Finally, the modular microfluidic platform was used to identify the peptides in trypsin-digested casein. Four additional peptides were identified, indicating an improvement in detection ability compared with using off-line zip tips coupled with MS investigations. Because the proposed modular platform can significantly reduce manual work, it would be a potential tool to achieve high throughput and automatic MS identifications with low sample consumptions. † Electronic supplementary information (ESI) available: One PDF le provides supporting information for pre-treatment and separation modules congurations, instrumental setup of the modular platform, PCR experimental details, and identication of reserpine with the proposed platform. See
A microfluidic emitter based on three-dimensional hydrodynamic focusing was developed to generate a wrapped charged aerosol plume, in which the distribution of the sample ion in the nanoelectrospray could be regulated. Deposition patterns of the wrapped spray from the proposed three-dimensional hydrodynamic focusing nanoelectrospray emitter (3D HFNE) were collected under different conditions to ensure the wrapped configuration. Moreover, sample ion intensities as well as their ratios to a focusing background ion were studied as a function of different displacements from the center of the wrapped electrospray to confirm the inhibition of ion expansion. Furthermore, the proposed 3D HFNE indicated improved sensitivities compared with a reported nanoelectropray emitter as well as its commercial ESI counterpart, and this demonstrated its capacity for determining samples with low concentrations and infusion rates. In addition, the proposed 3D HFNE was compatible with various sample flow compositions (from 100% methanol to 100% water) and a broad infusion rate range (from 10 nL min(-1) to 15 μL min(-1)). Finally, its stability and durability were indicated to be acceptable for various determinations. Therefore, the 3D HFNE is a potential option to achieve on-line nanoelectrospray MS determinations using microfluidics with conventional mass spectrometers, considering its low cost and user-friendly properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.