Neural coding is one of the central questions in systems neuroscience for understanding of how the brain processes stimulus from the environment, moreover, it is also a cornerstone for designing algorithms of brain-machine interface, where decoding incoming stimulus is highly demanded for better performance of physical devices. Traditionally researchers have focused on functional magnetic resonance imaging (fMRI) data as the neural signals of interest for decoding visual scenes. However, our visual perception operates in a fast time scale of millisecond in terms of an event termed neural spike.There are few studies of decoding by using spikes. Here we fulfill this aim by developing a novel decoding framework based on deep neural networks, named spike-image decoder (SID), for reconstructing natural visual scenes, including static images and dynamic videos, from experimentally recorded spikes of a population of retinal ganglion cells. The SID is an end-to-end decoder with one end as neural spikes and the other end as images, which can be trained directly such that visual scenes are reconstructed from spikes in a highly accurate fashion. Our SID also outperforms on the reconstruction of visual stimulus compared to existing fMRI decoding models. In addition, with the aid of a spike encoder, we show that SID can be generalized to arbitrary visual scenes by using the image datasets of MNIST, CIFAR10, and CIFAR100. Furthermore, with a pre-trained SID, one can decode any dynamic videos to achieve real-time encoding and decoding of visual scenes by spikes. Altogether, our results shed new lights on neu-romorphic computing for artificial visual systems, such as event-based visual cameras and visual neuroprostheses.
Neuroprosthesis, as one type of precision medicine device, is aiming for manipulating neuronal signals of the brain in a closed-loop fashion, together with receiving stimulus from the environment and controlling some part of our brain/body. In terms of vision, incoming information can be processed by the brain in millisecond interval. The retina computes visual scenes and then sends its output as neuronal spikes to the cortex for further computation. Therefore, the neuronal signal of interest for retinal neuroprosthesis is spike. Closed-loop computation in neuroprosthesis includes two stages: encoding stimulus to neuronal signal, and decoding it into stimulus. Here we review some of the recent progress about visual computation models that use spikes for analyzing natural scenes, including static images and dynamic movies. We hypothesize that for a better understanding of computational principles in the retina, one needs a hypercircuit view of the retina, in which different functional network motifs revealed in the cortex neuronal network should be taken into consideration for the retina. Different building blocks of the retina, including a diversity of cell types and synaptic connections, either chemical synapses or electrical synapses (gap junctions), make the retina an ideal neuronal network to adapt the computational techniques developed in artificial intelligence for modeling of encoding/decoding visual scenes. Altogether, one needs a systems approach of visual computation with spikes to advance the next generation of retinal neuroprosthesis as an artificial visual system.
Deep convolutional neural networks (CNNs) have demonstrated impressive performance on many visual tasks. Recently, they became useful models for the visual system in neuroscience. However, it is still not clear what are learned by CNNs in terms of neuronal circuits. When a deep CNN with many layers is used for the visual system, it is not easy to compare the structure components of CNN with possible neuroscience underpinnings due to highly complex circuits from the retina to higher visual cortex. Here we address this issue by focusing on single retinal ganglion cells with biophysical models and recording data from animals. By training CNNs with white noise images to predict neuronal responses, we found that fine structures of the retinal receptive field can be revealed. Specifically, convolutional filters learned are resembling biological components of the retinal circuit. This suggests that a CNN learning from one single retinal cell reveals a minimal neural network carried out in this cell. Furthermore, when CNNs learned from different cells are transferred between cells, there is a diversity of transfer learning performance, which indicates that CNNs are cell-specific. Moreover, when CNNs are transferred between different types of input images, here white noise v.s. natural images, transfer learning shows a good performance, which implies that CNN indeed captures the full computational ability of a single retinal cell for different inputs. Taken together, these results suggest that CNN could be used to reveal structure components of neuronal circuits, and provide a powerful model for neural system identification.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.