We report experimental observation of large anomalous Hall effect exhibited in non-collinear triangular antiferromagnet D019-type Mn3Ga with coplanar spin structure at temperatures higher than 100 K. The value of anomalous Hall resistivity increases with increasing temperature, which reaches 1.25 μΩ · cm at a low field of ~300 Oe at room temperature. The corresponding room-temperature anomalous Hall conductivity is about 17 (Ω · cm)−1. Most interestingly, as temperature falls below 100 K, a temperature-independent topological-like Hall effect was observed. The maximum peak value of topological Hall resistivity is about 0.255 μΩ · cm. The appearance of the topological Hall effect is attributed to the change of spin texture as a result of weak structural distortion from hexagonal to orthorhombic symmetry in Mn3Ga. Present study suggests that Mn3Ga shows promising possibility to be antiferromagnetic spintronics or topological Hall effect-based data storage devices.
Extensive first-principles calculations suggest that inverse Heusler compounds , , , and are the candidates to achieve fully compensated ferrimagnetic spin gapless semiconductors. It is shown that only the holes can be 100% spin polarized in , while both the excited electrons and the holes around the Fermi level 100% spin polarized in the others. A simple rule for searching potential fully compensated ferrimagnetic spin gapless semiconductors in Heusler compounds is proposed. Due to the spin gapless semiconducting and the fully compensated ferrimagnetic properties, these compounds offer distinct advantage towards the development of the practical spintronic devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.