BackgroundChronic arsenic exposure is associated with cardiovascular abnormalities. Prolongation of the QT (time between initial deflection of QRS complex to the end of T wave) interval and profound repolarization changes on electrocardiogram (ECG) have been reported in patients with acute promyelocytic leukemia treated with arsenic trioxide. This acquired form of long QT syndrome can result in life-threatening arrhythmias.ObjectiveThe objective of this study was to assess the cardiac effects of arsenic by investigating QT interval alterations in a human population chronically exposed to arsenic.MethodsResidents in Ba Men, Inner Mongolia, have been chronically exposed to arsenic via consumption of water from artesian wells. A total of 313 Ba Men residents with the mean arsenic exposure of 15 years were divided into three arsenic exposure groups: low (≤ 21 μg/L), medium (100–300 μg/L), and high (430–690 μg/L). ECGs were obtained on all study subjects. The normal range for QTc (corrected QT) interval is 0.33–0.44 sec, and QTc ≥ 0.45 sec was considered to be prolonged.ResultsThe prevalence rates of QT prolongation and water arsenic concentrations showed a dose-dependent relationship (p = 0.001). The prevalence rates of QTc prolongation were 3.9, 11.1, 20.6% for low, medium, and high arsenic exposure, respectively. QTc prolongation was also associated with sex (p < 0.0001) but not age (p = 0.486) or smoking (p = 0.1018). Females were more susceptible to QT prolongation than males.ConclusionsWe found significant association between chronic arsenic exposure and QT interval prolongation in a human population. QT interval may potentially be useful in the detection of early cardiac arsenic toxicity.
Shotgun proteomic analysis of the human nail plate identified 144 proteins in samples from Causcasian volunteers. The 30 identified proteins solubilized by detergent and reducing agent, 90% of the total nail plate mass, were primarily keratins and keratin associated proteins. Keratins comprised a majority of the detergent-insoluble fraction as well, but numerous cytoplasmic, membrane and junctional proteins and histones were also identified, indicating broad use by transglutaminases of available proteins as substrates for cross-linking. Two novel membrane proteins were identified, also found in the hair shaft, for which mRNAs were detected only at very low levels by real time polymerase chain reaction in other tissues. Parallel analyses of nail samples from volunteers from Inner Mongolia, China gave essentially the same protein profiles.Comparison of the profiles of nail plate and hair shaft from the latter volunteers revealed extensive overlap of protein constituents. Analyses of samples from an arsenic-exposed population revealed few proteins whose levels were altered substantially but raised the possibility of detecting sensitive individuals in this way.
We conducted a retrospective mortality study in an Inner Mongolian village exposed to well water contaminated by arsenic since the 1980s. Deaths occurring between January 1, 1997 and December 1, 2004 were classified according to underlying cause and water samples from household wells were tested for total arsenic. Heart disease mortality was associated with arsenic exposure, and the association strengthened with time exposed to the water source. Cancer mortality and all-cause mortality were associated with well-water arsenic exposure among those exposed 10-20 years. This is the first study to document increased arsenic-associated mortality in the Bayingnormen region of Inner Mongolia.
Arsenic, a human carcinogen, is known to induce oxidative damage to DNA. In this study we investigated oxidative stress and As exposure by determining gene expression of OGG1, which codes for an enzyme, 8-oxoguanine DNA glycosylase, involved in removing 8-oxoguanine in As-exposed individuals. Bayingnormen (Ba Men) residents in Inner Mongolia are chronically exposed to As via drinking water. Water, toenail, and blood samples were collected from 299 Ba Men residents exposed to 0.34–826 μg/L As. RNA was isolated from blood, and mRNA levels of OGG1 were determined using real-time polymerase chain reaction. OGG1 expression levels were linked to As concentrations in drinking water and nails, selenium concentrations in nails, and skin hyperkeratosis. OGG1 expression was strongly associated with water As concentrations (p < 0.0001). Addition of the quadratic term significantly improved the fit compared with the linear model (p = 0.05). The maximal OGG1 response was at the water As concentration of 149 μg/L. OGG1 expression was also significantly associated with toenail As concentrations (p = 0.015) but inversely associated with nail Se concentrations (p = 0.0095). We found no significant differences in the As-induced OGG1 expression due to sex, smoking, or age even though the oldest group showed the strongest OGG1 response (p = 0.0001). OGG1 expression showed a dose-dependent increased risk of skin hyperkeratosis in males (trend analysis, p = 0.02), but the trend was not statistically significant in females. The results from this study provide a linkage between oxidative stress and As exposure in humans. OGG1 expression may be useful as a biomarker for assessing oxidative stress from As exposure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.