Alkaline sphingomyelinase (alk-SMase) hydrolyzes dietary sphingomyelin and generates sphingolipid messengers in the gut. In the present study, we purified the enzyme, identified a part of the amino acid sequence, and found a cDNA in the GenBank TM coding for the protein. The cDNA contains 1841 bp, and the open reading frame encodes 458 amino acids. Transient expression of the cDNA linked to a Myc tag in COS-7 cells increased alk-SMase activity in the cell extract by 689-fold and in the medium by 27-fold. High activity was also identified in the anti-Myc immunoprecipitated proteins and the proteins cross-reacted with anti-human alkSMase. Northern blotting of human intestinal tissues found high levels of alk-SMase mRNA in the intestine and liver. The amino acid sequence shared no similarity with acid and neutral SMases but was related to the ecto-nucleotide phosphodiesterase (NPP) family with 30 -36% identity to human NPPs. Alk-SMase has a predicted signal peptide domain at the N terminus and a signal anchor domain at the C terminus. The ion-binding sites and the catalytic residue of NPPs were conserved, but the substrate specificity domain was modified. Alk-SMase had no detectable nucleotidase activity, but its activity against sphingomyelin could be inhibited by orthovanadate, imidazole, and ATP. In contrast to NPPs, alk-SMase activity was not stimulated by divalent metal ions but inhibited by Zn 2؉ . Differing from NPP2, the alk-SMase cleaved phosphocholine but not choline from lysophosphatidylcholine. Phylogenetic tree indicated that the enzyme is a new branch derived from the NPP family. Two cDNA sequences of mouse and rat that shared 83% identity to human alk-SMase were identified in the GenBank TM . In conclusion, we identified the amino acid and cDNA sequences of human intestinal alk-SMase, and found that it is a novel ectoenzyme related to the NPP family with specific features essential for its SMase activity. Sphingomyelin (SM)1 is a component of all mammalian cell membranes particularly the plasma membrane and the lysosomal membrane. SM is also a dietary component and is mainly present in milk, eggs, meat, and marine products (1, 2). Hydrolysis of SM generates ceramide, sphingosine, and sphingosine 1-phosphate that have regulatory effects on numerous cellular functions such as proliferation, differentiation, and apoptosis (3, 4). At least five types of sphingomyelinase (SMase) have been identified, of which acid and neutral SMases have been cloned (5-9). An enzyme that catalyzes hydrolysis of SM with optimal alkaline pH was first identified in the intestinal content of human and intestinal mucosa of rat and pig by Nilsson (10) and was named alkaline SMase (alkSMase) thereafter (11). Previous studies indicated that alkSMase may be responsible for digestion of dietary SM and for hydrolysis of endogenous SM derived from bile and from the brush borders of sloughed mucosal cells.SM metabolism in the intestine may have implications in colon cancer development. Dietary supplement with SM and ceramide analogues...
Sphingomyelin (SM) metabolism in the gut may have an impact on colon cancer development. In this study, we purified alkaline sphingomyelinase (alk-SMase) from human intestinal content, and studied its location in the mucosa, expression in colon cancer, and function on colon cancer cells. The enzyme was purified by a series of chromatographies. The molecular mass of the enzyme is 60 kDa, optimal pH is 8.5, and isoelectric point is 6.6. Under optimal conditions, 1 mg of the enzyme hydrolyzed 11 mM SM per hour. The properties of the enzyme are similar to those of rat intestinal alk-SMase but not to those of bacterial neutral SMase. Immunogold electronmicroscopy identified the enzyme on the microvillar membrane in endosome-like structures and in the Golgi complexes of human enterocytes. The expression and the activity of the enzyme were decreased in parallel in human colon cancer tissues compared with the adjacent normal tissue. The enzyme inhibited DNA biosynthesis and cell proliferation dose dependently and caused a reduction of SM in HT29 cells. Intestinal alk-SMase is localized in the enterocytes, downregulated in human colon cancer, and may have antiproliferative effects on colon cancer cells. -Duan, R
Exosome‐derived miRNAs are regarded as biomarkers for the diagnosis and prognosis of many human cancers. However, its function in clear cell renal cell carcinoma (ccRCC) remains unclear. In this study, differentially expressed miRNAs from urinal exosomes were identified using next‐generation sequencing (NGS) and verified using urine samples of ccRCC patients and healthy donors. Then, the exosomes were analysed in early‐stage ccRCC patients, healthy individuals and patients suffering from other urinary system cancers. Thereafter, the target gene of the miRNA was detected. Its biological function was investigated in vitro and in vivo. The results showed that miR‐30c‐5p could be amplified in a stable manner. Its expression pattern was significantly different only between ccRCC patients and healthy control individuals, but not compared with that of other urinary system cancers, which indicated its specificity for ccRCC. Additionally, the overexpression of miR‐30c‐5p inhibited ccRCC progression in vitro and in vivo. Heat‐shock protein 5 (HSPA5) was found to be a direct target gene of miR‐30c‐5p. The depletion of HSPA5 caused by miR‐30c‐5p inhibition reversed the promoting effect of ccRCC growth. In conclusion, urinary exosomal miR‐30c‐5p acts as a potential diagnostic biomarker of early‐stage ccRCC and may be able to modulate the expression of HSPA5, which is correlated with the progression of ccRCC.
Sphingomyelin (SM) metabolism in the gut has been implicated in colonic tumorigenesis. Intestinal alkaline sphingomyelinase (alk-SMase) hydrolyses SM in the intestinal content and at the brush border. The enzyme activity is decreased in the tissues of human colorectal tumours. This study examines whether site or chain-mutation of alk-SMase occurs in colon cancer HT-29 cells and Caco-2 cells. Total RNA was isolated and the cDNA of alk-SMase was amplified by RT-PCR. The size of the cDNA from HT-29 cells was smaller than that of the wild-type cDNA. DNA sequencing identified a deletion of exon 4 in alk-SMase cDNA in HT-29 cells. No mutation in genomic alk-SMase DNA from exon 3 to 5 was identified. The exon 4 deletion was caused by a shift of RNA splice site in chromosome 17q25. In Caco-2 cells, no mutation of alk-SMase cDNA was identified. Transient expression in COS-7 cells showed that the enzyme from the cDNA in HT-29 cells had little alk-SMase activity whereas that in Caco-2 cells was as active as the wild-type alk-SMase. The deleted region included residue His353, which is predicted to form a substrate-binding site of alk-SMase. H353A substitution resulted in a protein with no alk-SMase activity. In monolayer cultured Caco-2 cells and HT-29 cells the alk-SMase activities were low. However, to culture the cells under polarizing conditions increased alk-SMase activity and reduced SM level in Caco-2 cells. The alk-SMase activity varied in parallel with alkaline phosphatase activity. In conclusion, we identified an inactive deletion in alk-SMase in HT-29 cells, and a differentiation-related expression of the enzyme in Caco-2 cells. The results provide a molecular mechanism related to previous findings of reduced alk-SMase activity in human colon cancers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.