This study examined a potential role for vascular endothelial growth factor (VEGF) in uterine artery remodeling and vasodilation during pregnancy. Reverse transcription-polymerase chain reaction (RT-PCR) was used to detect VEGF mRNA in uterine tissues from nonpregnant (NP), midpregnant (MP, 15-16 days), and late-pregnant (LP, 19-21 days) rats and in placentas from MP and LP rats. VEGF mRNA levels in uteri and placentas were determined by Northern blotting, and the vasorelaxant activity of recombinant human VEGF (rh-VEGF) was tested and compared in isolated uterine arteries from LP and NP animals. VEGF120 and VEGF164 were the major isoforms detected in uterine tissues; all members of the VEGF family (VEGF120, VEGF164, VEGF188, and VEGF205) were expressed in LP placentas. VEGF mRNA levels increased 60% in MP and 80% in LP above those in NP (P < 0.05) in uterine tissues; VEGF mRNA levels were also detectable in placentas and elevated approximately fivefold in LP vs. MP tissues (P < 0.01). Phenylephrine-preconstricted uterine arcuate arteries (NP and LP) dilated in response to rhVEGF, an effect that was completely abolished by endothelial denudation or pretreatment with genistein, a tyrosine kinase inhibitor. The magnitude of dilation to an intermediate concentration of rhVEGF (1 nM) was greater in LP than in NP vessels (55 +/- 8 vs. 24 +/- 11%; P < 0.05), and this effect was diminished comparably in both groups (approximately 60% by N omega-nitro-L-arginine, an inhibitor of nitric oxide synthesis. These results suggest that VEGF may play a role in the vascular remodeling and vasodilation that lead to decreased uterine vascular resistance and increased uterine blood flow during pregnancy.
Palmitoylation of the recombinant human A(1) adenosine receptor (A(1)AR) expressed in HEK-293 cells is demonstrated by showing that hexahistidine (His(6))/Asp-Tyr-Lys-Asp-Asp-Asp-Asp-Lys (FLAG) (H/F) A(1)ARs, purified to homogeneity from cells metabolically labelled with [(3)H]palmitate, incorporate tritium into a 38-42 kDa receptor glycoprotein. The amount of palmitoylation is not affected by incubation of cells with the A(1)AR-selective agonist N(6)-cyclopentyladenosine (CPA). A(1)AR palmitoylation is abolished by treatment with neutral hydroxylamine or by mutation of Cys-309 to Ala (C(309)-->A). Based on Western blotting and pulse-chase experiments with [(35)S]methionine, at least 90% of wild-type receptors are palmitoylated and turn over with a t1/2 of 6.4 h. Of the C(309)-->A mutated receptors, 40% appear to turn over like wild-type receptors, with a t1/2 of 7.1 h, and 60% appear to be rapidly cleaved to form a 25 kDa receptor fragment that turns over with a t1/2 of 0.8 h. In HEK-293 cell lines expressing similar numbers of wild-type or C(309)-->A mutant A(1)Rs, there is little difference in the kinetics of CPA-induced receptor internalization (1 h), down-regulation (24 h), inhibition of forskolin-stimulated cAMP accumulation, or activation of co-transfected G-protein-activated inward rectifier K(+)/cardiac inward rectifying K(+) (GIRK1/CIR K(+)) channels. Also unaffected by palmitoylation is guanosine 5'-[gamma-thio]-triphosphate ([S]GTP)-sensitive binding to membranes by the agonist (125)I-labelled aminobenzyladenosine. The results suggest that palmitoylation has little effect on receptor-effector coupling, agonist-induced internalization or down-regulation. We speculate that palmitoylation may divert newly synthesized A(1)ARs from a pathway leading to rapid degradation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.