Based on the finite element method (FEM), characteristics of the local resonance band gap and the Bragg scattering band gap of two periodically-distributed vibrator structures are studied. Conditions of original anti-resonance generation are theoretically derived. The original anti-resonance effect leads to localization of vibration. Factors which influence original anti-resonance band gap are analyzed. The band gap width and the mass ratio between two vibrators are closely correlated to each other. Results show that the original anti-resonance band gap has few influencing factors. In the locally resonant structure, the Bragg scattering band gap is found. The mass density of the elastic medium and the elasticity modulus have an important impact on the Bragg band gap. The coexistence of the two mechanisms makes the band gap larger. The band gap covered 90% of the low frequencies below 2000 Hz. All in all, the research could provide references for studying the low-frequency and broad band gap of phononic crystal.
A hybrid phononic crystal has been investigated. The characteristic frequency of XY mode, transmission loss and displacement vector have been calculated by the finite element method. There are Bragg scattering band gap and local resonance band gap in the band structures. We studied the influence factors of band gap. There are many flat bands in the eigenfrequencies curve. There are many flat bands in the curve. The band gap covers a large range in low frequency. The band gaps cover more than 95% below 3000 Hz.
With the development of aerospace science and technology, more and more probes are expected to be deployed around extraterrestrial planets. In this paper, some special orbits around Jupiter, Saturn, Uranus, and Neptune are discussed and analyzed. The design methods of some special orbits are sorted out, considering the actual motion parameters and main perturbation forces of these four planets. The characteristics of sun-synchronous orbits, repeating ground track orbits, and synchronous planet orbits surrounding these plants are analyzed and compared. The analysis results show that Uranus does not have sun-synchronous orbits in the general sense. This paper also preliminarily calculates the orbital parameters of some special orbits around these planets, including the relationship between the semi-major axis, the eccentricity and the orbital inclination of the sun-synchronous orbits, the range of the regression coefficient of the sun-synchronous repeating ground track orbits, and the orbital parameters of synchronous planet orbits, laying a foundation for more accurate orbit design of future planetary probes.
Abstract-Based on constraint phononic crystal cutoff frequency characteristics, the paper studied effects on the phonon crystal band structure of the two-dimensional phononic crystal substrate density and elastic modulus under constraints. The spring quality equivalent model is proposed for the theoretical interpretation, and the results show that the equivalent model with similar constraints on phononic crystals bandgap structure has an important impact, and the cut-off frequency of phonon crystal is increased as the matrix density and elastic modulus increase. The further research of constraint phonon crystal band structure has important theoretical and practical significance for engineering of low-frequency vibration noise control.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.