third larval instar stage, suggesting that larval musculature is intact and that parkin is required only in pupal and adult muscle. parkin flies do not show an age-dependent dopaminergic neuron loss in the brain, even after aging adults for 3 weeks. Nevertheless, degeneration of IFMs demonstrates the importance of parkin in maintaining specific cell groups, perhaps those with a high-energy demand and the concomitant production of high levels of free radicals. parkin mutants will be a valuable model for future analysis of the mechanisms of cell and tissue degeneration.
Previously published reports have suggested that misexpression of alpha-Synuclein in the Drosophila central nervous system causes neurodegeneration and progressive age-dependent locomotor dysfunction similar to pathologic and clinical manifestations of Parkinson's disease. The number of dopaminergic (DA) neurons in these studies was assessed using immunohistochemistry with an anti-tyrosine hydroxylase antibody on sequential paraffin sections of fly brains. In contrast, we do not observe any DA cell loss in alpha-Synuclein expressing fly brains when using whole-mount immunohistochemistry as an assay. Our results suggest that the DA cell loss observed with misexpression of alpha-Synuclein is not fully penetrant under a variety of experimental conditions and that this may complicate interpretation of such experiments.
Drosophila dachshund is a critical regulator of eye, brain, and limb formation. Vertebrate homologs, Dach1 and Dach2, are expressed in the developing retina, brain, and limbs, suggesting functional conservation of the dachshund/Dach gene family. Dach1 mutants die postnatally, but exhibit grossly normal development. Here we report the generation of Dach2 mutant mice. Although deletion of Dach2 exon 1 results in abrogation of RNA expression, Dach2 mutants are viable and fertile. Histochemical analysis reveals grossly normal Dach2 mutant eye development. In addition, a battery of neurological assays failed to yield significant differences in behavior between Dach2 mutants and controls. We discuss these findings in the light of published observations of DACH2 mutations in the human population. Finally, to test the functional conservation hypothesis, we generated Dach2; Dach1 double mutant mice. Dach double mutants die after birth, similar to Dach1 homozygotes. However, unlike Drosophila dachshund mutants that lack eyes and exhibit leg truncations, the eyes and limbs of Dach double mutants are present, suggesting differences between Dach and dachshund gene function during embryonic eye and limb formation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.