Peridynamic theory has been shown to possess the capabilities of describing phenomena that theories based on partial differential equations are not capable of describing. These phenomena include nonlocal interactions and presence of singularities in system responses. To exploit the capabilities offered by peridynamics in the homogenization of heterogenous media, a nonlocal computational homogenization theory based on peridynamic correspondence model (non-ordinary state-based peridynamics) is proposed. To set the development of the theory on a rigorous mathematical framework and to ensure consistency with the nonlocal nature of the peridynamic theory, a nonlocal vector calculus was used in the analysis of the nonlocal homogenization theory. The proposed theory is a two-scale micro–macro-homogenization strategy in which the constitutive relation at the macroscale is derived from explicit solution of a nonlocal volume constraint problem at the microscale. To justify the coupling between the two scales, nonlocal analogues of the stress and strain average theorems as well as the Hill–Mandel macrohomogeneity condition were derived. Validation of the proposed theory is achieved via numerical solution of Representative Volume Elements (RVE) from composite materials and comparing the results with those obtained by means of established methodologies.
Static condensation is widely used as a model order reduction technique to reduce the computational effort and complexity of classical continuum-based computational models, such as finite-element models. Peridynamic theory is a nonlocal theory developed primarily to overcome the shortcoming of classical continuum-based models in handling discontinuous system responses. In this study, a model order reduction algorithm is developed based on the static condensation technique to reduce the order of peridynamic models. Numerical examples are considered to demonstrate the robustness of the proposed reduction algorithm in reproducing the static and dynamic response and the eigenresponse of the full peridynamic models.
A model order reduction methodology for reducing the order of the peridynamic transient heat model is proposed. This methodology is based on the static condensation procedure. To set the development of the model reduction procedure on a sound mathematical setting, a nonlocal vector calculus was employed in the formulation of the heat transport problem. The model order reduction framework proposed in this study provides a technique to reduce the dimensionality of a peridynamic transport model while still maintaining accurate prediction of the model response. Moreover, the methodology can be adaptively applied to accommodate different resolution requirements for different sections of the model. Using numerical experiments, the proposed methodology is shown to be capable of accurately reproducing results of the full peridynamic transient heat transport problem.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.