Purpose This paper aims to propose and establish a set of new benchmark models to investigate and confidently validate the modeling and prediction of total stray-field loss inside magnetic and non-magnetic components under harmonics-direct current (HDC) hybrid excitations. As a new member-set (P21e) of the testing electromagnetic analysis methods Problem 21 Family, the focus is on efficient analysis methods and accurate material property modeling under complex excitations. Design/methodology/approach This P21e-based benchmarking covers the design of new benchmark models with magnetic flux compensation, the establishment of a new benchmark measurement system with HDC hybrid excitation, the formulation of the testing program (such as defined Cases I–V) and the measurement and prediction of material properties under HDC hybrid excitations, to test electromagnetic analysis methods and finite element (FE) computation models and investigate the electromagnetic behavior of typical magnetic and electromagnetic shields in electrical equipment. Findings The updated Problem 21 Family (V.2021) can now be used to investigate and validate the total power loss and the different shielding performance of magnetic and electromagnetic shields under various HDC hybrid excitations, including the different spatial distributions of the same excitation parameters. The new member-set (P21e) with magnetic flux compensation can experimentally determine the total power loss inside the load-component, which helps to validate the numerical modeling and simulation with confidence. The additional iron loss inside the laminated sheets caused by the magnetic flux normal to the laminations must be correctly modeled and predicted during the design and analysis. It is also observed that the magnetic properties (B27R090) measured in the rolling and transverse directions with different direct current (DC) biasing magnetic field are quite different from each other. Research limitations/implications The future benchmarking target is to study the effects of stronger HDC hybrid excitations on the internal loss behavior and the microstructure of magnetic load components. Originality/value This paper proposes a new extension of Problem 21 Family (1993–2021) with the upgraded excitation, involving multi-harmonics and DC bias. The alternating current (AC) and DC excitation can be applied at the two sides of the model’s load-component to avoid the adverse impact on the AC and DC power supply and investigate the effect of different AC and DC hybrid patterns on the total loss inside the load-component. The overall effectiveness of numerical modeling and simulation is highlighted and achieved via combining the efficient electromagnetic analysis methods and solvers, the reliable material property modeling and prediction under complex excitations and the precise FE computation model using partition processing. The outcome of this project will be beneficial to large-scale and high-performance numerical modeling.
Transformers, reactors and other electrical equipment often work under harmonics and DC-bias working conditions. It is necessary to quickly and accurately simulate the hysteresis characteristics of soft magnetic materials under various excitation conditions in order to achieve accurate calculations of core loss and the optimal design of electrical equipment. Based on Preisach hysteresis model, a parameter identification method for asymmetric hysteresis loop simulation is designed and applied to the simulation of hysteresis characteristics under bias conditions of oriented silicon steel sheets. In this paper, the limiting hysteresis loops of oriented silicon steel sheets are obtained through experiments under different working conditions. The first-order reversal curves(FORCs) with asymmetric characteristics is generated numerically, and then the Everett function is established under different DC bias conditions. The hysteresis characteristics of the oriented silicon steel sheets under harmonics and DC bias are simulated by improving FORCs identification method of the Preisach model. By comparing the results of simulation and experiment, the effectiveness of the proposed method is verified, so as to provide an important reference for material production and application.
HVDC (High Voltage Direct Current) transmission equipment generally works under AC–DC hybrid excitation (with both DC-bias components and harmonics), increasing the loss of magnetic components and even causing local overheating. In order to study the influence of AC–DC hybrid excitation on the performance of magnetic materials, the loss properties of electrical silicon steel under AC–DC hybrid excitation are measured and modelled. This paper improves the iron loss model based on the Bertotti loss model by introducing a new term caused by DC bias. In addition, the improved loss model is combined with the transient loss model, and the iron loss calculation is performed based on the results of the TEAM P21 extended model. The comparison between the calculated and measured loss shows that the improved loss model is more accurate than the traditional one.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.