Using machine learning–based algorithms, we measure key impressions about sell‐side analysts using their LinkedIn photos. We find that impressions of analysts’ trustworthiness (TRUST) and dominance (DOM) are positively associated with forecast accuracy, especially after recent in‐person meetings between analysts and firm managers. High TRUST also enhances stock return sensitivity to forecast revisions, especially for stocks with high institutional ownership. In contrast, the impression of analysts’ attractiveness (ATTRACT) is only positively associated with accuracy for new analysts or when a firm has a new CEO or CFO. Furthermore, while high DOM helps male analysts’ chances of attaining All‐Star status, it reduces female analysts’ accuracy and the likelihood of winning the All‐Star award. In addition, the relation between TRUST and accuracy is modulated by the disclosure environment and is attenuated by Regulation Fair Disclosure. Our results suggest that face impressions influence analysts’ access to information and the perceived credibility of their reports.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.