The colloidal silver solution was successfully prepared in dielectric fluid by using electrical spark discharge (ESD) without any surfactants. It does not require the toxic chemical agents in the process, which may affect the effectiveness of nanosilver colloid as an antibacterial agent. Nanocolloidal silver produced by ESD is characterized as low cost, zero environmental pollution, continuous, and rapid mass production process. In order to test the effect of antibioactivity, nanosilver dough was tested; the silver nanofluid was prepared by ESD machine, made into dough at different concentrations, and fermented for three hours in order to observe changes in the diameter of the dough. The results showed that the effect of effectiveness of nanosilver at the concentration of 100 ppm was weak, whereas the effect of 60 ppm silver ion (100 ppm AgNO3) was significant, as the dissociation rate of silver ion concentration correlates to the antibioactivity.
This study uses the conductivity method, Electric Spark Discharge Method, and the electrospinning technique to develop a better silver-based antibacterial agent. The preparation process is free of chemical substances and also conforms to the green energy-saving process. The silver iodide was prepared in an iodine agar medium by using the conductivity method. Multiple bacteriostasis experiments showed that the molds grew in the position with iodine of the culture medium after 6 days, as well as in the position with silver iodide after 10 days. The results prove that silver iodide has better bacteriostatic ability than povidone iodine. The nanosilver colloid was prepared in the PVA solution by using the Electric Spark Discharge Method. UV-Vis, Zetasizer, and SEM-EDX analyses proved that the PVA solution contained nanosilver colloid with good suspension stability. Finally, the electrospinning technique was used to spin the PVA solution with nanosilver colloid into the PVA nanofibrous membrane. According to UV-Vis analysis, the absorption peak of this nanofibrous membrane is about 415 nm, meaning this nanofibrous membrane contains nucleate nanosilver colloid, and is very suitable for antiseptic dressing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.