Introduction: Improving peri-and postnatal facility-based care in low-resource settings (LRS) could save over 6000 babies' lives per day. Most of the annual 2.4 million neonatal deaths and 2 million stillbirths occur in healthcare facilities in LRS and are preventable through the implementation of cost-effective, simple, evidence-based interventions. However, their implementation is challenging in healthcare systems where one in four babies admitted to neonatal units die. In high-resource settings healthcare systems strengthening is increasingly delivered via learning healthcare systems to optimise care quality, but this approach is rare in LRS.Methods: Since 2014 we have worked in Bangladesh, Malawi, Zimbabwe, and the UK to co-develop and pilot the Neotree system: an android application with accompanying data visualisation, linkage, and export. Its low-cost hardware and state-ofthe-art software are used to support healthcare professionals to improve postnatal care at the bedside and to provide insights into population health trends. Here we summarise the formative conceptualisation, development, and preliminary implementation experience of the Neotree.Results: Data thus far from ~18 000 babies, 400 healthcare professionals in four hospitals (two in Zimbabwe, two in Malawi) show high acceptability, feasibility, usability, and improvements in healthcare professionals' ability to deliver newborn care. The data also highlight gaps in knowledge in newborn care and quality improvement.Implementation has been resilient and informative during external crises, for example, coronavirus disease 2019 (COVID-19) pandemic. We have demonstrated evidence of improvements in clinical care and use of data for Quality Improvement (QI) projects.Msandeni Esther Chiume and Simbarashe Chimhuya are joint last authors.
IntroductionEvery year 2.4 million deaths occur worldwide in babies younger than 28 days. Approximately 70% of these deaths occur in low-resource settings because of failure to implement evidence-based interventions. Digital health technologies may offer an implementation solution. Since 2014, we have worked in Bangladesh, Malawi, Zimbabwe and the UK to develop and pilot Neotree: an android app with accompanying data visualisation, linkage and export. Its low-cost hardware and state-of-the-art software are used to improve bedside postnatal care and to provide insights into population health trends, to impact wider policy and practice.Methods and analysisThis is a mixed methods (1) intervention codevelopment and optimisation and (2) pilot implementation evaluation (including economic evaluation) study. Neotree will be implemented in two hospitals in Zimbabwe, and one in Malawi. Over the 2-year study period clinical and demographic newborn data will be collected via Neotree, in addition to behavioural science informed qualitative and quantitative implementation evaluation and measures of cost, newborn care quality and usability. Neotree clinical decision support algorithms will be optimised according to best available evidence and clinical validation studies.Ethics and disseminationThis is a Wellcome Trust funded project (215742_Z_19_Z). Research ethics approvals have been obtained: Malawi College of Medicine Research and Ethics Committee (P.01/20/2909; P.02/19/2613); UCL (17123/001, 6681/001, 5019/004); Medical Research Council Zimbabwe (MRCZ/A/2570), BRTI and JREC institutional review boards (AP155/2020; JREC/327/19), Sally Mugabe Hospital Ethics Committee (071119/64; 250418/48). Results will be disseminated via academic publications and public and policy engagement activities. In this study, the care for an estimated 15 000 babies across three sites will be impacted.Trial registration numberNCT0512707; Pre-results
The global priority of improving neonatal survival could be tackled through the universal implementation of cost-effective maternal and newborn health interventions. Despite 90% of neonatal deaths occurring in low-resource settings, very few evidence-based digital health interventions exist to assist healthcare professionals in clinical decision-making in these settings. To bridge this gap, Neotree was co-developed through an iterative, user-centered design approach in collaboration with healthcare professionals in the UK, Bangladesh, Malawi, and Zimbabwe. It addresses a broad range of neonatal clinical diagnoses and healthcare indicators as opposed to being limited to specific conditions and follows national and international guidelines for newborn care. This digital health intervention includes a mobile application (app) which is designed to be used by healthcare professionals at the bedside. The app enables real-time data capture and provides education in newborn care and clinical decision support via integrated clinical management algorithms. Comprehensive routine patient data are prospectively collected regarding each newborn, as well as maternal data and blood test results, which are used to inform clinical decision making at the bedside. Data dashboards provide healthcare professionals and hospital management a near real-time overview of patient statistics that can be used for healthcare quality improvement purposes. To enable this workflow, the Neotree web editor allows fine-grained customization of the mobile app. The data pipeline manages data flow from the app to secure databases and then to the dashboard. Implemented in three hospitals in two countries so far, Neotree has captured routine data and supported the care of over 21,000 babies and has been used by over 450 healthcare professionals. All code and documentation are open source, allowing adoption and adaptation by clinicians, researchers, and developers.
BackgroundNeonatal mortality is high in low-resource settings. NeoTree is a digital intervention for neonatal healthcare professionals (HCPs) aiming to achieve data-driven quality improvement and improved neonatal survival in low-resource hospitals. Optimising usability with end-users could help digital health interventions succeed beyond pilot stages in low-resource settings. Usability is the quality of a user's experience when interacting with an intervention, encompassing their effectiveness, efficiency, and overall satisfaction.ObjectiveTo evaluate the usability and usage of NeoTree beta-app and conduct Agile usability-focused intervention development.MethodA real-world pilot of NeoTree beta-app was conducted over 6 months at Kamuzu Central Hospital neonatal unit, Malawi. Prior to deployment, think-aloud interviews were conducted to guide nurses through the app whilst voicing their thoughts aloud (n = 6). System Usability Scale (SUS) scores were collected before the implementation of NeoTree into usual clinical care and 6 months after implementation (n = 8 and 8). During the pilot, real-world user-feedback and user-data were gathered. Feedback notes were subjected to thematic analysis within an Agile “product backlog.” For usage, number of users, user-cadre, proportion of admissions/outcomes recorded digitally, and median app-completion times were calculated.ResultsTwelve overarching usability themes generated 57 app adjustments, 39 (68%) from think aloud analysis and 18 (32%) from the real-world testing. A total of 21 usability themes/issues with corresponding app features were produced and added to the app. Six themes relating to data collection included exhaustiveness of data schema, prevention of errors, ease of progression, efficiency of data entry using shortcuts, navigation of user interface (UI), and relevancy of content. Six themes relating to the clinical care included cohesion with ward process, embedded education, locally coherent language, adaptability of user-interface to available resources, and printout design to facilitate handover. SUS scores were above average (88.1 and 89.4 at 1 and 6 months, respectively). Ninety-three different HCPs of 5 cadres, recorded 1,323 admissions and 1,197 outcomes over 6 months. NeoTree achieved 100% digital coverage of sick neonates admitted. Median completion times were 16 and 8 min for admissions and outcomes, respectively.ConclusionsThis study demonstrates optimisation of a digital health app in a low-resource setting and could inform other similar usability studies apps in similar settings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.