The N = 2 supersymmetric KdV equations are studied within the framework of Hirota bilinear method. For two such equations, namely N = 2, a = 4 and N = 2, a = 1 supersymmetric KdV equations, we obtain the corresponding bilinear formulations. Using them, we construct particular solutions for both cases. In particular, a bilinear Bäcklund transformation is given for the N = 2, a = 1 supersymmetric KdV equation.
Recent work has explored binary waveguide arrays in the long-wavelength, near-continuum limit, here we examine the opposite limit, namely the vicinity of the so-called anti-continuum limit. We provide a systematic discussion of states involving one, two and three excited waveguides, and provide comparisons that illustrate how the stability of these states differ from the monoatomic limit of a single type of waveguide. We do so by developing a general theory which systematically tracks down the key eigenvalues of the linearized system. When we find the states to be unstable, we explore their dynamical evolution through direct numerical simulations. The latter typically illustrate, for the parameter values considered herein, the persistence of localized dynamics and the emergence for the duration of our simulations of robust quasi-periodic states for two excited sites. As the number of excited nodes increase, the unstable dynamics feature less regular oscillations of the solution's amplitude.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.