For studying the effect of a substituted group on the photoresponsive third-order nonlinear-optical (NLO) properties, photosensitive azobenzene derivative. Then H 2 L2 with a substituted methyl on the azobenzene ring was used to constructWhen the azobenzene moiety of the complexes is trans, the NLO behaviors of the complexes are the same. However, after the azobenzene moiety is excited by ultraviolet (UV) light to change from trans to cis, the substituted methyl increases the repulsion between two azobenzene rings in 3 and 4, thereby affecting their NLO behaviors. Therefore, the nonlinearity of the two types of complexes is different after UV irradiation. Density functional theory calculations support this result. The substituted methyl has a significant influence on the nonlinear absorption behaviors of 3 and 4. This work not only reports the examples of photoresponsive NLO materials based on metal complexes but also provides a new idea to deeply explore NLO properties.
The photo-controllable third-order nonlinear optical (NLO) switches have drawn ever-increasing attention due to considerable research potential in the emerging field of nonlinear optics. A class of materials, which contain photosensitive groups but cannot express directly switching properties under light conditions, can also exhibit the characteristics of excellent photo-controllable NLO switches after external regulation. Azobenzene is a kind of classic photo-isomerized molecule and has good π coplanar property and excellent electron channel, which can engender third-order NLO response under push and pull electron action. It is a feasible strategy to design photo-controlled NLO switch materials by introducing azo groups. Nevertheless, the trans-cis isomerization behaviors of some azobenzene derivatives are interfered by other groups or external factors, further inhibiting the conversion of photo-controllable third-order NLO properties. Once these external interference factors are found and removed, the photo-controllable NLO behaviors of such azobenzene derivatives will be opened. In our work, a special azobenzene derivative was synthesized and reported, which was unable to produce cis-trans isomerization due to the H + effect of self-dissociation, and the H + effect could be shield by introducing organic groups or bases. The adjusted materials can easily undergo reversible cis-trans isomerization reaction, and the Z-scan test shows the complete inversions of third-order NLO properties before and after UV irradiation. The adjusted materials in trans configuration show the reverse saturation absorption (RSA) and self-defocusing properties. After UV irradiation, the materials convert into cis configuration and exhibit saturation absorption (SA) and strong self-focusing behaviors. To gain a deeper understanding of the light-adjusted third-order NLO switch behaviors, density functional theory (DFT) calculations of (CH 3 ) 2 L were carried out. For trans-(CH 3 ) 2 L, HOMO and LUMO are mainly localized on the azobenzene unit, where π-π* transition between the two orbitals is displayed. The azobenzene unit in the trans-(CH 3 ) 2 L is considered to have considerable contribution to the generation of third-order nonlinearity. For cis-(CH 3 ) 2 L, the electron cloud density of HOMO is mainly populated on the azobenzene unit, whereas the electron cloud density distribution of LUMO appears on the entire molecule, suggesting significant intramolecular charge transfer (ICT) from azobenzene to the entire molecule. The effect of ICT in the cis structure dominants the generation of third-order nonlinearity. The remarkable third-order NLO transformation result from the rearrangement of the electronic structures, which makes them generate different response mechanisms under the laser stimulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.