Exploring the regulatory mechanism played by endogenous rice miRNAs in defense responses against the blast disease is of great significance in both resistant variety breeding and disease control management. We identified rice defense-related miRNAs by comparing rice miRNA expression patterns before and after Magnaporthe oryzae strain Guy11 infection. We discovered that osa-miR164a expression reduced upon Guy11 infection at both early and late stages, which was perfectly associated with the induced expression of its target gene, OsNAC60. OsNAC60 encodes a transcription factor, over-expression of which enhanced defense responses, such as increased programmed cell death, greater ion leakage, more reactive oxygen species accumulation and callose deposition, and upregulation of defense-related genes. By using transgenic rice over-expressing osa-miR164a, and a transposon insertion mutant of OsNAC60, we showed that when the miR164a/OsNAC60 regulatory module was dysfunctional, rice developed significant susceptibility to Guy11 infection. The co-expression of OsNAC60 and osa-miR164a abolished the OsNAC60 activity, but not its synonymous mutant. We further validated that this regulatory module is conserved in plant resistance to multiple plant diseases, such as the rice sheath blight, tomato late blight, and soybean root and stem rot diseases. Our results demonstrate that the miR164a/OsNAC60 regulatory module manipulates rice defense responses to M. oryzae infection. This discovery is of great potential for resistant variety breeding and disease control to a broad spectrum of pathogens in the future.
IntroductionThe Changjiang (Yangtze) River is one of the largest rivers in the world, and its estuary and offshore plume create a diversity of ecological habitats for the phytoplankton community. The phytoplankton community has to balance between light limitation in the sediment-laden inshore waters and nutrient limitation in the offshore waters. Active fluorescence measurements can provide rapid, non-intrusive estimates of photosynthetic characteristics at high spatial and temporal resolution.MethodsIn the summer of 2020, a field survey of hydrodynamic characteristics, availability of nutrients, the maximum quantum efficiency of photosystem II (Fv/Fm), and rapid light curves across the Changjiang River Estuary and its adjacent sea was conducted, assessing relationships between photosynthetic physiology and biomass accumulation.ResultsThe photosynthetic activities significantly differed among the turbid river water, the stratified river plume water, and the oceanic East China Sea Water. The photosynthetic physiology of phytoplankton was the most active near the front of Changjiang Diluted Water, where the Fv/Fm was over 0.5.DiscussionPhytoplankton photosynthesis was alleviated from light limitation downstream of the river mouth, and benefited from phosphorus supply via tidal mixing and upwelling. The relatively suitable light and nutrients led to high photosynthetic activities, supporting increased productivity and biomass in this water. The phytoplankton in the Changjiang estuary rivermouth were under intense stress, suggested by the Fv/Fm values under 0.3. Also, the strong vertical mixing process diluted the river nutrients before the phytoplankton consumed them. Nutrients further limited the phytoplankton offshore in the East China Sea.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.